山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 115-119.doi: 10.6040/j.issn.1672-3961.0.2017.428
肖苗苗1,2,魏本征1,2*,尹义龙3
XIAO Miaomiao1,2, WEI Benzheng1,2*, YIN Yilong3
摘要: K-means算法对初始聚类中心及簇数K的选择敏感,导致聚类结果不稳定,会对IDS(intrusion detection system, IDS)的检测结果产生重要影响。针对该问题,提出一种基于细菌觅食优化算法(bacterial foraging optimization algorithm, BFOA)和K-means相复合的入侵检测算法(HIDS)。HIDS算法首先基于距离阈值方法动态确定簇数K,再利用BFOA优化生成初始聚类中心,使得选择的初始聚类中心达到全局最优,从而解决了K-means算法的聚类结果不稳定的问题,进而提高入侵检测的准确率。为验证算法的有效性和测试算法性能,将HIDS在KDD99数据集上进行试验测试,入侵检测率可达98.33%。试验结果表明该方法能够有效提高检测率并且降低误检率。
中图分类号:
[1] 赵光霞,宋心蕊. 2016年世界互联网发展乌镇报告[M/OL]. 乌镇:人民网,2016[2016-11-18].http://media.people.com.cn/n1/2016/1118/c40606-28879457-2.html. [2] WANG Zhu, CHEN Chao, GUO Bin, et al. Internet plus in China[J]. IT Professional, 2016, 18(3):5-8. [3] ALI Mazhar, KHAN S U, VASILAKOS A V. Security in cloud computing:opportunities and challenges[J]. Information Sciences, 2015, 305(1):357-383. [4] ARDAGNA C A, BELLANDI V, BEZZI M, et al. Model-based big data analytics-as-a-service:take big data to the next level[J]. IEEE Transactions on Services Computing, 2018(99):1-1. [5] MODI Chirag,PATEL Dhiren,BORISANIYA Bhavesh, et al. A survey of intrusion detection techniques in cloud[J]. Journal of Network and Computer Applications, 2013, 36(1):42-57. [6] DAVIES D L, BOULDIN, DONALD W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2):224-227. [7] THOMAS Hofmann. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2001, 42(1-2):177-196. [8] SONG Jingping, ZHU Zhiliang, PRICE Chris. A new evidence accumulation method with hierarchical clustering[C] //2016 IEEE International Conference on Cloud Computing and Big Data Analysis. Chengdu, China:IEEE, 2016:122-124. [9] ANIL Jain. Data clustering:50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8):651-666. [10] YU Guan, GHORBANI, NABIL Belacel. Y-means: a clustering method for intrusion detection[C] // Proceedings of Canadian Conference on Electrical and Computer Engineering. Montreal, Canada:IEEE, 2003:1083-1086. [11] LI Han. Research and implementation of an anomaly detection model based on clustering analysis[C] // Proceedings of International Symposium on Intelligence Information Processing and Trusted Computing(IPTC 2010). Huanggang, China:IEEE, 2010:458-462. [12] 傅涛,孙民亚. 基于PSO的K-means算法及其在网络入侵检测中的应用[J]. 计算机科学,2010,38(5):54-55+73. FU tao, SUN Minya. K-means algorithm based on PSO and its application in network intrusion detection[J]. Computer Science, 2010, 38(5):54-55+73. [13] ABUROMMAN Abdulla Amin, IBNE REAZ Mamun Bin. A novel SVM-KNN-PSO ensemble method for intrusion detection system[J]. Applied Soft Computing, 2016, 38(1):360-372. [14] WEI Benzheng, ZHAO Zhimin, PENG Xin. A novel method of medical image registration based on feature point mutual information and ipso algorithm[J]. Journal of Computational Information Systems, 2010, 7(2):559-567. [15] HUANG Zhexue. Extensions to the K-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304. [16] PANDA Sidhartha, MOHANTY Banaja, HOTA P K. Hybrid BFOA-PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems[J]. Applied Soft Computing, 2013, 13(12):4718-4730. [17] STOLFO S J, WEI Fan, WENKE Lee. Cost-based modeling for fraud and intrusion detection: results from the jam project[C] //Proceedings of the 2000 DARPA Information Survivability Conference and Exposition. Hilton Head, USA:IEEE, 2000:130-144. [18] BERNHARD Pfahringer. Winning the kdd99 classification cup:bagged boosting[J]. ACM SIGKDD Explorations Newsletter, 2000, 1(1):65-66. [19] RICHARD Lippmann, JOSHUA Haines, DAVID Fried. The 1999 darpa off-line intrusion detection evaluation[J]. Computer Networks, 2000, 34(4):579-595. [20] KUMAR Gulshan, KUMAR Krishan. Design of an evolutionary approach for intrusion detection[J]. The Scientific World Journal, 2013, 2013(2013):1-14. |
[1] | 李春彦,刘怡良,王良民*. 车载自组网中基于交通场景的入侵行为检测机制[J]. 山东大学学报(工学版), 2014, 44(1): 29-34. |
[2] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
[3] | 夏战国,万玲,蔡世玉,孙鹏辉. 一种面向入侵检测的半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(6): 1-7. |
[4] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
[5] | 刘元勋,徐秋亮,云晓春 . 面向入侵检测系统的通用应用层协议识别技术研究[J]. 山东大学学报(工学版), 2007, 37(1): 65-69 . |
[6] | 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 . |
|