山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 110-114.doi: 10.6040/j.issn.1672-3961.0.2017.413
何文杰 1,何伟超2,孙权森1*
HE Wenjie1, HE Weichao2, SUN Quansen1*
摘要: 针对压缩感知重构算法计算实时性太差的问题,提出压缩采样追踪匹配(compressive sampling matching pursuit,CoSaMP)算法的并行化加速算法。 基于多线程技术实现重构算法的粗粒度并行化,分析CoSaMP算法的计算热点,将其中耗时较多的矩阵操作移植在图形处理器(graphics processing unit, GPU)上,实现算法的细粒度并行化。在测试图像上进行试验,结果表明:并行化加速算法取得50倍的加速效果,有效地降低重构算法的计算时间开销。
中图分类号:
[1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [2] LUSTING M, DONOHO D, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195. [3] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 1(4):586-597. [4] GHAHREMANI M, GHASSEMIAN H. Remote sensing image fusion using ripplet transform and compressed sensing[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(3):502-506. [5] WANG L, LU K, LIU P. Compressed sensing of a remote sensing image based on the priors of the reference image[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(4):736-740. [6] BLANCHARD J D, TANNER J. GPU accelerated greedy algorithms for compressed sensing[J]. Mathematical Programming Computation, 2013, 5(3):267-304. [7] CHO M, MISHRA K V, XU W. Computable performance guarantees for compressed sensing matrices[J]. Eurasip Journal on Advances in Signal Processing, 2018, 2018(1):16. [8] KARAHANOGLU N B, ERDOGAN H. A*orthogonal matching pursuit: best-first search for compressed sensing signal recovery[J]. Digital Signal Processing, 2012, 22(4):555-568. [9] ZHAO Y, YOSHIGOE K, BIAN J, et al. A distributed graph-parallel computing system with lightweight communication overhead[J]. IEEE Transactions on Big Data, 2017, 2(3):204-218. [10] ASANOVIC K, BODIK R, DEMMEL J, et al. A view of the parallel computing landscape[J]. Communications of the Acm, 2009, 52(10):56-67. [11] GARLAND M, GRAND S L, NICKOLLS J, et al. Parallel computing experiences with CUDA[J]. Micro IEEE, 2008, 28(4):13-27. [12] SHI L, CHEN H, SUN J. VCUDA: GPU accelerated high performance computing in virtual machines[J]. IEEE Transactions on Computers, 2012, 61(6):804-816. [13] EGEL A, PATTELLI L, MAZZAMUTO G, et al. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 199:103-110. [14] JIANG H, GANESAN N. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU[J]. Bmc Bioinformatics, 2016, 17(1):1-16. [15] GILBERT R, MIJAILOVICH S. Distributed multi-scale muscle simulation in a hybrid MPI-CUDA computational environment[J]. Simulation, 2016, 92(1):19-31. [16] HANAPPE P, BEURIVÉ A, LAGUZET F, et al. Famous, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm[J]. Geoscientific Model Development Discussions, 2011, 4(3):1273-1303. [17] MAROOSI A, MUNIYANDI R C, SUNDARARAJAN E, et al. Parallel and distributed computing models on a graphics processing unit to accelerate simulation of membrane systems[J]. Simulation Modelling Practice & Theory, 2014, 47(47):60-78. [18] HUANG J W, ZHANG L Q, JIANG Z Y, et al. Heterogeneous parallel computing accelerated iterative subpixel digital image correlation[J]. Science China Technological Sciences, 2018, 61(1):74-85. [19] ROMERO-LAORDEN D, VILLAZÓN-TERRAZAS J, MARTÍNEZ-GRAULLERA O, et al. Analysis of parallel computing strategies to accelerate ultrasound imaging processes[J]. IEEE Transactions on Parallel & Distributed Systems, 2016, 27(12):3429-3440. [20] GUNARATHNE T, ZHANG B, WU T L, et al. Scalable parallel computing on clouds using Twister4Azure iterative MapReduce[J]. Future Generation Computer Systems, 2013, 29(4):1035-1048. [21] LI S, FENG J. An optimized data processing model for computer big data platform based on parallel computing[J]. Boletin Tecnico/Technical Bulletin, 2017, 55(8):318-324. [22] BLANCHARD J D, TANNER J. GPU accelerated greedy algorithms for compressed sensing[J]. Mathematical Programming Computation, 2013, 5(3):267-304. [23] MOUSTAFA M, EBEID H M, HELMY A, et al. Rapid real-time generation of super-resolution hyperspectral images through compressive sensing and GPU[J]. International Journal of Remote Sensing, 2016, 37(18):4201-4224. [24] BERNABÉ S, MARTÍN G, NASCIMENTO J M P, et al. Parallel hyperspectral coded aperture for compressive sensing on GPUs[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(2):932-944. |
[1] | 周凯,元昌安,覃晓,郑彦,冯文铎. 基于核贝叶斯压缩感知的人脸识别[J]. 山东大学学报(工学版), 2016, 46(3): 74-78. |
|