山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 71-77.doi: 10.6040/j.issn.1672-3961.0.2017.085
姬安召,王玉风*,刘雪芬
JI Anzhao, WANG Yufeng*, LIU Xuefen
摘要: 为了解决复合Bessel函数零点计算问题,提出修正粒子群与量子粒子群优化算法。修正后的算法能够找到复合Bessel函数有限区间内绝大部分函数零点。为了进一步提高函数零点的搜索能力,结合前两种算法特点,借鉴交叉算子操作,对带交叉算子量子粒子群算法进行修正,修正后的算法能找到复合Bessel函数有限区间内所有函数零点,修正后带交叉算子量子粒子群算法收敛速度快,零点计算精度高。计算结果表明:同一参数复合Bessel函数除去前3个零点,后续零点与零点次序在双对数坐标系中符合直线关系。对不同参数计算的零点与零点次序进行直线拟合,相关程度达到99.99%,零点拟合的相对误差小于0.5%,能够满足工程计算的需求。
中图分类号:
[1] VAN EVERDINGEN AF. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949, 1(12):305-324. [2] 陈钟祥, 姜礼尚. 双重孔隙介质渗流方程组的精确解[J]. 中国科学, 1980, 1(2):152-165. CHEN Zhongxiang, JIANG Lishang. Exact solution for the flow equations through a medium with dual-porosity[J]. Science China, 1980, 1(2):152-165. [3] 蒋继光. 裂缝性储集层内渗流问题的精确解[J]. 应用数学学报, 1980, 3(3):210-222. JIANG Jiguang. Exact solution for the seepage problem through fractured reservoir[J]. Acta Mathematicae Applicatae Sinica, 1980, 3(3):210-222. [4] 刘慈群. 三重介质弹性渗流方程组的精确解[J]. 应用数学和力学, 1981, 2(4):419-424. LIU Ciqun. Exact solution for the compressible flow equations through a medium with triple-porosity[J]. Applied Mathematics and Mechanics, 1981, 2(4):419-424. [5] 吴玉树, 葛家理. 三重介质裂一隙油藏中的渗流问题[J]. 力学学报, 1983, 1(1):81-85. WU Yushu, GE Jiali. The transient flow in naturally fractured reservoirs with three-porosity systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 1983, 1(1):81-85. [6] 冯文光, 葛家理. 多重介质组合油藏非定常非达西高速渗流问题的解析研究[J]. 西南石油大学学报(自然科学版), 1985, 22(3):14-28. FENG Wenguang, GE Jiali. Analytical study of unsteady and non-darcy high-speed flow through multiple medium in composite reservoirs[J]. Journal of Southwest Petroleum University(Science and Technology Edition), 1985, 22(3):14-28. [7] 曹绪龙, 同登科, 王瑞和. 考虑二次梯度项影响的非线性不稳定渗流问题的精确解[J]. 应用数学和力学, 2004, 25(1):93-99. CAO Xulong, TONG Dengke, WANG Ruihe. Exact solutions for nonlinear transient flow model including a quadratic gradient term[J]. Applied Mathematics and Mechanics, 2004, 25(1):93-99. [8] LI Minqiang, LIN Dan, KOU Jisong. A hybrid nicking PSO enhanced with recombination replacement crowding strategy for multimodal function optimization[J]. Applied Soft Computing, 2012, 12(3):975-987. [9] FAVERO J L, SILVA L F L R, LAGE P L C. Comparison of methods for multivariate moment inversion-introducing the independent component analysis[J]. Computers and Chemical Engineering, 2014, 60(1):41-56. [10] SUBHRAJIT R, MINHAZUL S K, SWAGATAM D, et al. Multimodal optimization by artificial weed colonies enhanced with localized group search optimizers[J]. Applied Soft Computing, 2013, 13(1):27-16. [11] ZILINSKAS A. On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions[J]. Applied Mathematics and Computation, 2012, 218(16):8131-8136. [12] SHIMA K. Using a self-adaptive neighborhood scheme with crowding replacement memory in genetic algorithm for multimodal optimization[J]. Swarm and Evolutionary Computation, 2013, 12(1):1-17. [13] 刘道华, 倪永军, 孙芳, 等. 一种混沌蚁群算法的多峰函数优化方法[J]. 西安电子科技大学学报(自然科学版), 2015, 42(3):141-147. LIU Daohua, NI Yongjun, SUN Fang, et al. Optimization method for multimodal functions based on chaotic ant colony algorithms[J]. Journal of Xidian University(Natural Science Edition), 2015, 42(3):141-147. [14] 陈博文, 蒋磊, 刘潇文, 等. 基于混沌量子粒子群的 FHN神经元UWB信号检测[J].计算机工程与应用, 2017, 53(6):135-140. CHEN Bowen, JIANG Lei, LIU Xiaowen, et al. Ultra-wideband signal detection based on chaotic quantum particle swarm optimization FHN model method[J]. Computer Engineering and Applications, 2017, 53(6):135-140. [15] 冯仲恺, 廖胜利, 牛文静, 等. 改进量子粒子群算法在水电站群优化调度中的应用[J].水科学进展, 2015, 26(3):413-419. FENG Zhongkai, LIAO Shengli, NIU Wenjing, et al. Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations[J]. Advances in Water Science, 2015, 26(3):413-419. [16] 宁涛, 王旭坪, 焦璇,等. 基于混沌量子算法和MAGTD的多目标FJSP求解策略[J].运筹与管理, 2017, 26(1):18-24. NING Tao, WANG Xuping, JIAO Xuan, et al. Study on multi-objective flexible job shop scheduling based on chaos quantum optimization and MAGTD[J]. Operations Research and Management Science, 2017, 26(1):18-24. [17] 高岳林, 余雅萍. 基于混合量子粒子群优化的投资组合模型及实证分析[J].工程数学学报, 2017, 34(1):21-30. GAO Yuelin, YU Yaping. Portfolio model based on hybrid quantum particle swarm optimization with empirical research[J]. Chinese Journal of Engineering Mathematics, 2017, 34(1):21-30. [18] 陈汉武, 朱建锋, 阮越, 等. 带交叉算子的量子粒子群优化算法[J].东南大学学报(自然科学版), 2016, 46(1):23-29. CHEN Hanwu, ZHU Jianfeng, RUAN Yue, et al. Quantum particle swarm optimization algorithm with crossover operator[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1):23-29. [19] 田瑾. 高维多峰函数的量子行为粒子群优化算法改进研究[J]. 控制与决策, 2016, 31(11):1967-1972. TIAN Jin. Improvement of quantum-behaved particle swarm optimization algorithm for high-dimensional and multi-modal functions[J]. Control and Decision, 2016, 31(11):1967-1972. [20] 程林辉, 钟洛. 求解多峰函数优化问题的并行免疫遗传算法[J]. 微电子学与计算机, 2015, 32(5):117-121. CHENG Linhui, ZHONG Luo. A parallel immune genetic algorithm for multimodal function optimization problem[J]. Microelectronics and Computer, 2015, 32(5):117-121. |
[1] | 戴红伟, 杨玉, 仲兆满, 李存华. 改进量子交叉免疫克隆算法及其应用[J]. 山东大学学报(工学版), 2015, 45(2): 17-21. |
|