您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 71-77.doi: 10.6040/j.issn.1672-3961.0.2017.085

• • 上一篇    下一篇

复合Bessel函数零点数值计算方法及分布规律

姬安召,王玉风*,刘雪芬   

  1. 陇东学院能源工程学院, 甘肃 庆阳 745000
  • 收稿日期:2017-03-10 出版日期:2018-02-20 发布日期:2017-03-10
  • 通讯作者: 王玉风(1986— ),女,河北石家庄人,讲师,硕士,主要研究方向为应用地球物理. E-mail:yinyu413@163.com E-mail:jianzhao-831024@163.com
  • 作者简介:姬安召(1983— ),男,甘肃庆阳人,讲师,硕士,主要研究方向为油气藏数值模拟. E-mail:jianzhao-831024@163.com
  • 基金资助:
    甘肃省自然科学基金资助项目(1606RJZM092);甘肃省青年科技基金资助项目(1606RJYM259,1506RJYM324)

Numerical calculation method and distribution law of zero points of the compound Bessel function

JI Anzhao, WANG Yufeng*, LIU Xuefen   

  1. College of Energy Engineering, Longdong University, Qingyang 745000, Gansu, China
  • Received:2017-03-10 Online:2018-02-20 Published:2017-03-10

摘要: 为了解决复合Bessel函数零点计算问题,提出修正粒子群与量子粒子群优化算法。修正后的算法能够找到复合Bessel函数有限区间内绝大部分函数零点。为了进一步提高函数零点的搜索能力,结合前两种算法特点,借鉴交叉算子操作,对带交叉算子量子粒子群算法进行修正,修正后的算法能找到复合Bessel函数有限区间内所有函数零点,修正后带交叉算子量子粒子群算法收敛速度快,零点计算精度高。计算结果表明:同一参数复合Bessel函数除去前3个零点,后续零点与零点次序在双对数坐标系中符合直线关系。对不同参数计算的零点与零点次序进行直线拟合,相关程度达到99.99%,零点拟合的相对误差小于0.5%,能够满足工程计算的需求。

关键词: 交叉算子, 多峰函数, 复合Bessel函数, 有界地层, 量子粒子群

Abstract: In order to solve the problem of computing the zeros of compound Bessel functions, a modified optimization algorithm of the particle swarm and the quantum-behaved particle swarm were proposed. Most of the zero points of the compound Bessel function could be calculated by modified algorithm in the finite interval. In order to improve the searching ability of the zero points, the quantum-behaved particle swarm optimization algorithm with crossover operator was modified by using cross operator operation in combination with the characteristics of the two former algorithms. All the zero points of the compound Bessel function in the finite interval were found with the modified version of algorithm. The modified version of algorithm was faster with convergence rate and higher with zero points calculation accuracy. The calculation results showed that, except for the former three zero points, the following zero points showed linear relationship with their sequence on double logarithmic coordinate axis under the same parameters of the compound Bessel function. The straight-line fitting of the zero points and their sequence from different parameters was calculated. The results showed that the correlation coefficient was 99.99% and the relative error of zero point fitting was less than 0.5%, which could full fit the requirement of engineering calculation.

Key words: compound Bessel function, multimodal function, crossover operator, quantum particle swarm, finite reservoirs

中图分类号: 

  • TE32
[1] VAN EVERDINGEN AF. The application of the Laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology, 1949, 1(12):305-324.
[2] 陈钟祥, 姜礼尚. 双重孔隙介质渗流方程组的精确解[J]. 中国科学, 1980, 1(2):152-165. CHEN Zhongxiang, JIANG Lishang. Exact solution for the flow equations through a medium with dual-porosity[J]. Science China, 1980, 1(2):152-165.
[3] 蒋继光. 裂缝性储集层内渗流问题的精确解[J]. 应用数学学报, 1980, 3(3):210-222. JIANG Jiguang. Exact solution for the seepage problem through fractured reservoir[J]. Acta Mathematicae Applicatae Sinica, 1980, 3(3):210-222.
[4] 刘慈群. 三重介质弹性渗流方程组的精确解[J]. 应用数学和力学, 1981, 2(4):419-424. LIU Ciqun. Exact solution for the compressible flow equations through a medium with triple-porosity[J]. Applied Mathematics and Mechanics, 1981, 2(4):419-424.
[5] 吴玉树, 葛家理. 三重介质裂一隙油藏中的渗流问题[J]. 力学学报, 1983, 1(1):81-85. WU Yushu, GE Jiali. The transient flow in naturally fractured reservoirs with three-porosity systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 1983, 1(1):81-85.
[6] 冯文光, 葛家理. 多重介质组合油藏非定常非达西高速渗流问题的解析研究[J]. 西南石油大学学报(自然科学版), 1985, 22(3):14-28. FENG Wenguang, GE Jiali. Analytical study of unsteady and non-darcy high-speed flow through multiple medium in composite reservoirs[J]. Journal of Southwest Petroleum University(Science and Technology Edition), 1985, 22(3):14-28.
[7] 曹绪龙, 同登科, 王瑞和. 考虑二次梯度项影响的非线性不稳定渗流问题的精确解[J]. 应用数学和力学, 2004, 25(1):93-99. CAO Xulong, TONG Dengke, WANG Ruihe. Exact solutions for nonlinear transient flow model including a quadratic gradient term[J]. Applied Mathematics and Mechanics, 2004, 25(1):93-99.
[8] LI Minqiang, LIN Dan, KOU Jisong. A hybrid nicking PSO enhanced with recombination replacement crowding strategy for multimodal function optimization[J]. Applied Soft Computing, 2012, 12(3):975-987.
[9] FAVERO J L, SILVA L F L R, LAGE P L C. Comparison of methods for multivariate moment inversion-introducing the independent component analysis[J]. Computers and Chemical Engineering, 2014, 60(1):41-56.
[10] SUBHRAJIT R, MINHAZUL S K, SWAGATAM D, et al. Multimodal optimization by artificial weed colonies enhanced with localized group search optimizers[J]. Applied Soft Computing, 2013, 13(1):27-16.
[11] ZILINSKAS A. On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions[J]. Applied Mathematics and Computation, 2012, 218(16):8131-8136.
[12] SHIMA K. Using a self-adaptive neighborhood scheme with crowding replacement memory in genetic algorithm for multimodal optimization[J]. Swarm and Evolutionary Computation, 2013, 12(1):1-17.
[13] 刘道华, 倪永军, 孙芳, 等. 一种混沌蚁群算法的多峰函数优化方法[J]. 西安电子科技大学学报(自然科学版), 2015, 42(3):141-147. LIU Daohua, NI Yongjun, SUN Fang, et al. Optimization method for multimodal functions based on chaotic ant colony algorithms[J]. Journal of Xidian University(Natural Science Edition), 2015, 42(3):141-147.
[14] 陈博文, 蒋磊, 刘潇文, 等. 基于混沌量子粒子群的 FHN神经元UWB信号检测[J].计算机工程与应用, 2017, 53(6):135-140. CHEN Bowen, JIANG Lei, LIU Xiaowen, et al. Ultra-wideband signal detection based on chaotic quantum particle swarm optimization FHN model method[J]. Computer Engineering and Applications, 2017, 53(6):135-140.
[15] 冯仲恺, 廖胜利, 牛文静, 等. 改进量子粒子群算法在水电站群优化调度中的应用[J].水科学进展, 2015, 26(3):413-419. FENG Zhongkai, LIAO Shengli, NIU Wenjing, et al. Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations[J]. Advances in Water Science, 2015, 26(3):413-419.
[16] 宁涛, 王旭坪, 焦璇,等. 基于混沌量子算法和MAGTD的多目标FJSP求解策略[J].运筹与管理, 2017, 26(1):18-24. NING Tao, WANG Xuping, JIAO Xuan, et al. Study on multi-objective flexible job shop scheduling based on chaos quantum optimization and MAGTD[J]. Operations Research and Management Science, 2017, 26(1):18-24.
[17] 高岳林, 余雅萍. 基于混合量子粒子群优化的投资组合模型及实证分析[J].工程数学学报, 2017, 34(1):21-30. GAO Yuelin, YU Yaping. Portfolio model based on hybrid quantum particle swarm optimization with empirical research[J]. Chinese Journal of Engineering Mathematics, 2017, 34(1):21-30.
[18] 陈汉武, 朱建锋, 阮越, 等. 带交叉算子的量子粒子群优化算法[J].东南大学学报(自然科学版), 2016, 46(1):23-29. CHEN Hanwu, ZHU Jianfeng, RUAN Yue, et al. Quantum particle swarm optimization algorithm with crossover operator[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1):23-29.
[19] 田瑾. 高维多峰函数的量子行为粒子群优化算法改进研究[J]. 控制与决策, 2016, 31(11):1967-1972. TIAN Jin. Improvement of quantum-behaved particle swarm optimization algorithm for high-dimensional and multi-modal functions[J]. Control and Decision, 2016, 31(11):1967-1972.
[20] 程林辉, 钟洛. 求解多峰函数优化问题的并行免疫遗传算法[J]. 微电子学与计算机, 2015, 32(5):117-121. CHENG Linhui, ZHONG Luo. A parallel immune genetic algorithm for multimodal function optimization problem[J]. Microelectronics and Computer, 2015, 32(5):117-121.
[1] 戴红伟, 杨玉, 仲兆满, 李存华. 改进量子交叉免疫克隆算法及其应用[J]. 山东大学学报(工学版), 2015, 45(2): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!