您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 65-70.doi: 10.6040/j.issn.1672-3961.0.2017.068

• • 上一篇    下一篇

平板气膜冷却热固耦合特性的分析

王湛1,张超2*   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061;2. 天津理工大学机械工程学院, 天津 300384
  • 收稿日期:2017-02-27 出版日期:2018-02-20 发布日期:2017-02-27
  • 通讯作者: 张超(1983— ),男,河南商丘人,讲师,博士,主要研究方向为涡轮机械传热. E-mail: czhangxj@163.com E-mail:wangzhan@sdu.edu.cn
  • 作者简介:王湛(1981— ),男,山东济南人,讲师,博士,主要研究方向为涡轮机械传热.E-mail: wangzhan@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51506150)

Analysis on thermal-solid coupling properity of flat-plate film cooling

WANG Zhan1, ZHANG Chao2*   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2017-02-27 Online:2018-02-20 Published:2017-02-27

摘要: 为分析气膜冷却方法的综合冷却效果和可靠性,采用热弹耦合的计算方法对带气膜孔平板的冷却过程进行数值模拟,获得平板内部温度和热应力的分布特征,比较不同吹风比和不同气膜孔型对冷却效果的影响。结果表明:内部冷却和金属导热使固体内部温度分布较为均匀,热应力集中在气膜孔的前缘和尾缘。与传统圆孔相比,扇形孔和双射流孔能够显著提高冷却效率并降低热应力。该结果可为燃气涡轮叶片的冷却设计提供参考。

关键词: 热应力, 孔型, 燃气涡轮, 气膜冷却, 热固耦合

Abstract: In order to analysis the comprehensive cooling effect and reliability of the film cooling method, the thermal-solid coupling calculating method was utilized to simulate the cooling process on the flat plate with film cooling holes. The inner temperature and the thermal stress distribution profiles were obtained, and the influence of cooling effects by different blowing ratios and hole types was compared. The results showed that the uniform inner temperature distribution was caused by the inner cooling and metal heat conduction, the thermal stress consentrated on the leading edge and trailing edge of the cooling hole. Conpared with the traditional round hole, the fan-shaped and double-jet holes could obviously improve the cooling effectiveness and decrease thermal stress. Research results could provide a reference for the cooling design of the gas turbine blade.

Key words: gas turbine, thermal-solid coupling, thermal Stress, hole type, film-cooling

中图分类号: 

  • TK225
[1] HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. NewYork: Taylor & Francis Book, 2000.
[2] LEYLEK J H, ZERKLE R D. Discrete jet film-cooling: a comparison of computational results with experiments[J]. ASME Journal of Transaction, 1994, 116:358-368.
[3] FRIC T F, ROSHIKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics, 1994, 279:1-47.
[4] SINHA A, BOGARD D, CRAWFORD M. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. ASME Journal of Transaction, 1991, 113:442-449.
[5] SAUMWEBER C, SCHULZ A, WITTIG S. Free-stream turbulence effects on film-cooling with shaped holes[J]. ASME Journal of Turbomachinery, 2003, 125:65-73.
[6] BRITTINGHAM R A, LEYLEK J H. A detailed analysis of film cooling physics: part IV: compound-angle injection with shaped holes[J]. Journal of Turbomachinery, 2000, 122:133-145.
[7] HALE C A, PLESNIAK M W, RAMADHYANI S. Film cooling effectiveness for short film cooling holes fed by a narrow plenum[J]. Transactions of the ASME, 2000, 122:553-557.
[8] MCGOVERN K, LEYLEK J. A detailed analysis of film-cooling physics—compound angle injection with cylindrical holes[J]. ASME Journal of Turbomachinery, 2000, 122:113-121.
[9] LEE K D, CHOI D W, KIM K Y. Optimization of ejection angles of double-jet film-cooling holes using RBNN model[J]. International Journal of Thermal Sciences, 2013, 73:69-78.
[10] CHENG Huichuan, WU Hong, LI Yulong, et al. Effect of rotation on a downstream sister holes film cooling performance in a flat plate model[J]. Experimental Thermal and Fluid Science, 2017, 85:154-166.
[11] KE Zhaoqing, WANG Jianhua. Conjugate heat transfer simulations of pulsed film cooling on an entire turbine vane[J]. Applied Thermal Engineering, 2016, 109:600-609.
[12] JUNG E Y, CHUNG H, CHO S M, et al. Conjugate heat transfer on full-coverage film cooling with array jet impingements with various Biot numbers[J]. Experimental Thermal and Fluid Science, 2017, 83:1-8.
[13] JIANG Yuting, ZHENG Qun, DONG Ping, et al. Conjugate heat transfer analysis of leading edge and downstream mist—air film cooling on turbine vane[J]. International Journal of Heat and Mass Transfer, 2015, 90:613-626.
[14] 孙杰, 宋迎东, 孙志刚. 涡轮冷却叶片热固耦合分析与优化设计[J]. 航空动力学报, 2008, 23(12):2162-2169. SUN Jie, SONG Yingdong, SUN Zhigang. Thermeset coupling analysis and optimization design of turbine cooling blade[J]. Aerospace Power, 2008, 23(12): 2162-2169.
[15] 胡捷. 燃气轮机透平叶片闭式蒸汽冷却研究[D]. 北京: 中国科学院研究生院, 2008. HU Jie. Investigation on closed-loop steam cooling schemes of a gas turbine guide vane[D]. Beijing: Graduates University of Chinese Academy of Sciences, 2008.
[16] ZHU W, WANG J W, YANG L, et al. Modeling and simulation of the temperature and stress field in a 3D turbine blade coated with thermal barrier coatings[J]. Surface and Coating Technology, 2017, 315:443-453.
[17] CITARELLA R, GIANNELLA V, VIVO E. Impacts of geometric parameters of double-jet film cooling on anti-kidney vortex structure and cooling effectiveness[J]. Theoretical and Applied Fracture Mechanics, 2016, 86:143-152.
[18] CHUNG H, SOHN H S, PARK J S. Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils[J]. Energy, 2017, 118:1275-1285.
[19] 王湛, 张超, 刘建军. 平板圆孔气膜冷却的热弹耦合分析[J]. 航空动力学报, 2015, 30(6): 1298-1306. WANG Zhan, ZHANG Chao, LIU Jianjun. Thermo-elastc coupling analysis of round-hole flat-plate film-cooling[J]. Journal of Aerospace Power, 2015, 30(6): 1298-1306.
[20] WANG Zhan, LIU Jianjun, ZHANG Chao. Impacts of geometric parameters of double-jet film cooling on anti-kidney vortex structure and cooling effectiveness [C] //Proceedings of ASME Turbo Expo 2013. Texas, USA: ASME Press, 2013: GT94038.1-GT94038.9.
[1] 员冬玲,邓建新,丁泽良,段振兴 . 梯度陶瓷水煤浆喷嘴的残余热应力有限元分析[J]. 山东大学学报(工学版), 2008, 38(2): 18-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!