您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 128-133.doi: 10.6040/j.issn.1672-3961.0.2017.579

• • 上一篇    下一篇

基于最小偏差法的全球能源优化配置方法

张恒旭,韩林晓,石访   

  1. 全球能源互联网协同创新中心(山东大学), 山东 济南 250061
  • 收稿日期:2017-11-13 出版日期:2017-12-20 发布日期:2017-11-13
  • 作者简介:张恒旭(1975— ),男,山东夏津人,教授,博导,博士,主要研究方向为电力系统稳定分析与控制. E-mail: zhanghx@sdu.edu.cn
  • 基金资助:
    国家电网公司科技资助项目(SGSDDK00KJJS1600061)

Optimal allocation of global energy based on minimum deviation method

ZHANG Hengxu, HAN Linxiao, SHI Fang   

  1. Collaborative Innovation Center for Global Energy Interconnection(Shandong University), Jinan 250061, Shandong, China
  • Received:2017-11-13 Online:2017-12-20 Published:2017-11-13

摘要: 全球能源互联网旨在构建以清洁能源为主、电力为中心,全球范围优化配置资源的世界能源发展新格局,是实现未来社会经济可持续发展的强力支撑。对全球能源互联背景下的能源配置问题进行研究,以最小化能源成本和传输损耗为目标函数,以运输系统容量、能源供给量和能源需求量为约束条件,构建多目标优化模型。为减少主观性对多目标优化的影响,运用最小偏差法转化为单目标优化模型,并采用GAMS软件求解。算例分析表明,电能替代化石能源能有效降低用能总成本。对比分析洲际电网互联下的优化配置方案,并分析了其关于环境效益的灵敏度。

关键词: 最小偏差法, 全球能源互联网, 清洁能源, 特高压, 优化配置

Abstract: Global energy interconnection dedicated to form a new pattern of world energy development in which clean energy plays dominating role, the electric power was the center and the energy resources are optimally allocated worldwide. It will become the strong support to achieve sustainable development of society and economy in the future. To study the energy allocation in the background of global energy interconnection, a multi-objective optimization model was established. In this model, minimizing energy cost and minimizing transmission loss were objectives. Restrictions included energy supply, energy demand and capacity of transmission system. In order to reduce the influence of subjectivity on multi-objective optimization, the model was transformed into single-objective optimization model based on minimum deviation method and solved by GAMS software. The case study showed that electricity replacement could effectively reduce total energy cost. Based on this, the optimal allocation scheme of global energy under transcontinental grids was compared and analyzed, and its sensitivity on environmental benefits was discussed.

Key words: minimum deviation method, ultra-high voltage, global energy interconnection, optimal allocation, clean energy

中图分类号: 

  • TM315
[1] JACOBSON M Z, DELUCCHI M A. Providing all global energy with wind, water,and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy Policy, 2011, 39(3): 1154-1169.
[2] DELUCCHI M A, JACOBSON M Z. Providing all global energy with wind, water, and solar power, part II: reliability, system and transmission costs, and policies[J]. Energy policy, 2011, 39(3): 1170-1190.
[3] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
[4] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015.
[5] 王益民. 全球能源互联网理念及前景展望[J]. 中国电力, 2016, 49(3):1-5,11. WANG Yimin. Concept and prospect of global energy interconnection[J]. Electric Power, 2016, 49(3):1-5,11.
[6] 刘振亚. 全球能源互联网:必须以电为中心[J]. 电气时代, 2016(1):34-36.
[7] 刘晓黎, 张泽中, 黄强, 等. 面向可再生能源配额制的可再生能源优化配置模型研究[J]. 太阳能学报, 2008(2):256-260. LIU Xiaoli, ZHANG Zezhong, HUANG Qiang, et al. Study on the optimal configuration model of renewable energy facing renewable portfolio standard[J]. Acta Energiae Solaris Sinica, 2008(2):256-260.
[8] 林伯强, 姚昕. 电力布局优化与能源综合运输体系[J]. 经济研究, 2009, 44(6):105-115. LIN Boqiang, YAO Xin. Power industry location optimization and integrative energy transportation system[J]. Economic Research Journal, 2009, 44(6):105-115.
[9] 姜广君. 我国能源运输通道体系综合评价及优化研究[D]. 北京:中国矿业大学(北京), 2011.
[10] 周琦梦. 基于空间数据聚合的中国煤电输送系统分析[D]. 上海:华东理工大学, 2014.
[11] 舒印彪, 张运洲. 优化我国能源输送方式研究[J]. 中国电力, 2007, 40(11): 4-8. SHU Yinbiao, ZHANG Yunzhou. Research on the optimization of energy transportation mode in China[J]. Electric Power, 2007, 40(11): 4-8.
[12] 王耀华, 张风营, 白建华. 输煤输电经济性比较[J]. 中国电力, 2007(12): 6-9. WANG Yaohua, ZHANG Fengying, BAI Jianhua. Comparative research on the economy of coal transportation and power transmission[J]. Electric Power, 2007(12):6-9.
[13] 神瑞宝, 张粒子, 张洪, 等. 输煤输电经济性比较研究[J]. 中国电力, 2013, 46(10): 133-139. SHEN Ruibao, ZHANG Lizi, ZHANG Hong, et al. Economic comparisons of coal transportation and power transmission[J]. Electric Power, 2013, 46(10): 133-139.
[14] 李立浧, 饶宏, 张东辉, 等. 输煤输电的技术经济比较研究及其重要战略意义[J]. 中国工程科学, 2015, 17(9):63-68. LI Licheng, RAO Hong, ZHANG Donghui, et al. Comparison between coal transportation and power transmission in terms of technology and cost[J]. Engineering Sciences, 2015, 17(9): 63-68.
[15] 江智军, 谌洪江, 刘见, 等. 输煤与输电环境效益比较分析[J]. 科学技术与工程, 2016, 16(17): 302-308. JIANG Zhijun, CHEN Hongjiang, LIU Jian, et al. Comparative study on environmental benefits of coal transportation and power transmission[J]. Science Technology and Engineering, 2016, 16(17): 302-308.
[16] BP集团.BP世界能源统计年鉴(2011版)[R]. 伦敦: BP集团,2011.
[17] 娄希杰, 张玉良, 秦海洋. 浅析进口原油海运损耗[J]. 中国石油和化工标准与质量, 2014(7): 71-71.
[18] 李晓宇, 王长友, 刘玉文, 等. “十三五”期间中国天然气行业竞争态势及对策[J]. 天然气工业, 2016, 36(2):119-124. LI Xiaoyu, WANG Changyou, LIU Yuwen, et al. Competition situation of Chinas natural gas industry during the 13th Five-Year Plan and the corresponding countermeasures[J]. Natural Gas Industry, 2016, 36(2)119-124.
[19] 国网能源研究院. 国际能源与电力价格分析报告2012[M]. 北京: 中国电力出版社, 2012.
[20] 刘振亚. 特高压交直流电网[M]. 北京: 中国电力出版社, 2013.
[21] 丁伟, 胡兆光. 特高压输电经济性比较研究[J]. 电网技术, 2006, 30(19): 7-13. DING Wei, HU Zhaoguang. The research on the economy comparison of Ultra High Voltage[J]. Power System Technology, 2006, 30(19): 7-13.
[22] 付建飞. 交通运输业外部成本计算方法研究[J]. 铁道运输与经济, 2008, 30(8): 14-16.
[1] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[2] 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156.
[3] 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6.
[4] 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142.
[5] 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150.
[6] 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102.
[7] 赵康,王春义,杨冬,刘玉田. 考虑单相短路电流控制的特高压受端电网限流优化[J]. 山东大学学报(工学版), 2016, 46(4): 117-124.
[8] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154-158.
[9] 高风华,曹升乐,徐光杰 . 整数规划在农村饮水安全水源优化配置模型中的应用与探讨[J]. 山东大学学报(工学版), 2007, 37(6): 98-100 .
[10] 张承慧,裴荣辉,石庆升,马永庆 . 城市变频调速给水泵站的优化配置[J]. 山东大学学报(工学版), 2007, 37(2): 97-102 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!