您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 223-228.doi: 10.6040/j.issn.1672-3961.0.2017.179

• • 上一篇    下一篇

基于小波包信息熵和小波神经网络的异步电机故障诊断

吴建萍,姜斌*,刘剑慰   

  1. 南京航空航天大学自动化学院, 江苏 南京 211100
  • 收稿日期:2017-04-18 出版日期:2017-10-20 发布日期:2017-04-18
  • 通讯作者: 姜斌(1966— ),男,江西鄱阳人,教授,博士生导师,主要研究方向为故障诊断与容错控制. E-mail:binjiang@nuaa.edu.cn E-mail:wujianping@nuaa.edu.cn
  • 作者简介:吴建萍(1995— ),女,江苏常州人,硕士研究生,主要研究方向为高铁故障诊断. E-mail:wujianping@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61490703);中央高校基本科研业务费专项基金资助项目(NJ20150011);南京航空航天大学大学生创新创业训练计划基金资助项目(ZT2016021)

Fault diagnosis of asynchronous motor based on wavelet packet entropy and wavelet neural network

WU Jianping, JIANG Bin*, LIU Jianwei   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, Jiangsu, China
  • Received:2017-04-18 Online:2017-10-20 Published:2017-04-18

摘要: 采用一种基于小波包信息熵和小波神经网络的方法对异步电机进行故障诊断。将故障信号进行小波包预处理,并在此基础上提取信号的小波包能谱熵和小波包系数熵,构成信号的信息熵特征向量。训练小波神经网络使其在输入特征向量后能有效检测并输出故障模式,以实现对单一故障和复合故障的诊断。通过内嵌的方式把小波变换融入神经网络,具有良好的自适应分辨率和容错能力,可以有效避免局部最小值以及收敛速度过于缓慢的问题。试验表明,基于小波包信息熵和小波神经网络的方法能很好地进行异步电机的故障诊断,且该方法优于同参数下的BP神经网络模型。

关键词: 信息熵, 小波神经网络, 异步电机, 小波包, 故障诊断

Abstract: A method based on wavelet packet entropy and wavelet neural network was presented for asynchronous motor to realize fault diagnosis. The signal with faulty information was pretreated by wavelet packet, the wavelet packet energy spectrum entropy and coefficient entropy was extracted. The feature vector of information entropy was constructed. When the feature vector was input into the wavelet neural network, we trained it to detect and output the fault mode, so as to realize the fault diagnosis. This method had good adaptive resolution and fault tolerance, and it could avoid local minima and slow convergence effectively. The experiment results showed that this method could be used for fault diagnosis of induction motors, which was better than BP neural network model with the same parameters.

Key words: wavelet packet, asynchronous motor, fault diagnosis, information entropy, wavelet neural network

中图分类号: 

  • TM343
[1] 周东华, 孙优贤.控制系统的故障检测和诊断技术[M]. 北京:清华大学出版社, 1994.
[2] 刘剑慰, 姜斌, 杨蒲, 等. 基于近似熵的直流牵引电动机健康监测方法[J]. 上海应用技术学院学报, 2015, 15(2): 159-161. LIU Jianwei, JIANG Bin, YANG Pu, et al. DC traction motor health monitoring method based on approximate entropy[J]. Journal of Shanghai Institute of Technology, 2015, 15(2): 159-161.
[3] PENG Mingfang, SHEN Meie, HE Yigang, et al. Analog Circuit Diagnosis Using RBF Network and D-S Evidential Reasoning[J].Transactions of China Electrotechnical Society, 2009, 24(8):6-13.
[4] 张雄希, 李保国. 小波与倒频谱分析法在异步电机故障诊断中的应用[J]. 大电机技术, 2010(5):32-34, 43. ZHANG Xiongxi, LI Baoguo. Application of wavelet and cepstrum analysis in fault diagnosis of asynchronous motor[J]. Large Motor Technology, 2010(5):32-34, 43.
[5] 许允之, 赵月南, 仝年, 等基于混沌理论的异步电机偏心故障诊断的研究[J]. 大电机技术, 2015(3): 4-7, 40. XU Yunzhi, ZHAO Yuenan, TONG Nian, et al. Research on asynchronous motor eccentric fault diagnosis based on Chaos Theory[J]. Large Motor Technology, 2015(3): 4-7, 40.
[6] 李盛翀. 基于人工免疫算法的异步电机故障诊断研究[J]. 电子技术与软件工程, 2015,16:189. LI Shengchong. Research on fault diagnosis of induction motor based on artificial immune algorithm[J]. Electronic Technology and Software Engineering, 2015, 16:189.
[7] 宋秀, 尉宇. 基于短时分数阶傅里叶变换的异步电机转子断条故障诊断[J]. 武汉科技大学学报, 2016, 39(2):145-149. SONG Xiu, WEI Yu. Rotor broken bar fault diagnosis of induction motor based on short time fractional Fourier transform[J]. Journal of Wuhan University of Science and Technology, 2016, 39(2):145-149.
[8] HUANG Nordene, SHEN Zheng, LONG Stevenr. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995.
[9] WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[10] 姜斌, 冒泽慧, 杨浩, 等.控制系统的故障诊断与故障调节[M]. 北京: 国防工业出版社, 2009.
[11] 王贺, 胡志坚, 陈珍, 等.基于集合经验模态分解和小波神经网络的短期风功率组合预测[J]. 电工技术学报, 2013, 28(9): 137-144. WANG He, HU Zhijian, CHEN Zhen, et al. Short term wind power combination forecasting based on set empirical mode decomposition and wavelet neural network[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 137-144.
[12] 王家军. 基于自回归小波神经网络的感应电动机滑模反推控制[J]. 自动化学报, 2009, 35(1):1-8. WANG Jiajun. Sliding mode backstepping control of induction motor based on autoregressive wavelet neural network[J]. Acta Automatica Sinica, 2009, 35(1): 1-8.
[13] 刘红平. 基于WNN的公交充电站短期负荷预测方法[J].控制工程, 2016, 23(11): 1725-1729. LIU Hongping. Short term load forecasting method for public transportation charging station based on WNN[J]. Control Engineering, 2016, 23(11): 1725-1729.
[14] 姜斌, 赵静, 齐瑞云. 近空间飞行器故障诊断与容错控制的研究进展[J]. 南京航空航天大学学报, 2012, 44(7): 603-609. JIANG Bin, ZHAO Jing, QI Ruiyun. Research progress of fault diagnosis and fault tolerant control for near space vehicle[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(5):603-609.
[15] XU Yufei, JIANG Bin, TAO Gang, et al. Fault tolerant control for a class of nonlinear systems with application to near space vehicle[J].Circuits System Signal Process, 2011, 30: 655-672.
[16] 于凤芹. 实用小波分析十讲[M]. 西安: 西安电子科技大学出版社, 2013:8-9.
[17] 何正友, 蔡玉梅, 钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J]. 中国电机工程学报, 2005, 25(5): 23-43. HE Zhengyou, CAI Yumei, QIAN Qingquan. Research on wavelet entropy theory and its application in power system fault detection[J]. Chinese Journal of Electrical Engineering, 2005, 25(5): 23-43.
[18] 徐贵斌, 周东华.基于在线学习神经网络的状态依赖型故障预测[J]. 浙江大学学报(工学版), 2010, 44(7): 1251-1254. XU Guibin, ZHOU Donghua. State dependent fault prediction based on online learning neural networks[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(7): 1251-1254.
[19] 王小川, 史峰, 郁磊, 等.MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013:279.
[20] 周东华, 胡艳艳.动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758. ZHOU Donghua, HU Yanyan. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758.
[21] 杨笑悦, 阳春华, 彭涛. 基于替代模型的单粒子瞬态效应注入[J]. 上海应用技术学院学报(自然科学版), 2015, 15(3): 299-304. YANG Xiaoyue, YANG Chunhua, PENG Tao. Single particle transient effects injection based on surrogate model[J]. Journal of Shanghai Institute of Technology(Natural Science Edition), 2015, 15(3): 299-304.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[4] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[5] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[6] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[7] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[8] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[9] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[10] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[11] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[12] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[13] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[14] 李静立,王谦,张军,李磊磊. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102.
[15] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!