山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 179-186.doi: 10.6040/j.issn.1672-3961.0.2017.181
王磊,邓晓刚*,曹玉苹,田学民
WANG Lei, DENG Xiaogang*, CAO Yuping, TIAN Xuemin
摘要: Fisher判别分析(FDA)是一种有效的化工过程故障模式分类方法,但是其忽视了数据局部结构信息的挖掘。针对该问题,提出一种多块局部Fisher判别分析(MLFDA)方法,以更有效地识别化工过程故障。从变量和样本两个维度来分析数据的局部结构特性。针对变量维度的局部信息挖掘问题,设计了一种基于变量与数据集主元空间的相关度的变量分块方法,将全局过程变量划分为多个局部变量块。进一步考虑到样本维度的局部结构特性,应用基于局部权重因子的局部Fisher判别分析(LFDA)为每个局部变量块构建分类器。提出一种基于分类性能加权的多分类器集成方法,以融合不同分类器的决策结果。在Tennessee Eastman过程上的仿真结果说明,MLFDA方法具有比传统的FDA和LFDA方法更低的故障误分类率。
中图分类号:
[1] QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234. [2] GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562. [3] YIN S, LI X, GAO H, et al. Data-based techniques focused on modern industry: an overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):657-667. [4] DENG X, TIAN X, CHEN S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 127(16):195-209. [5] ZHANG Y, DU W, FAN Y, et al. Process fault detection using directional kernel partial least squares[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2509-2518. [6] TIAN X, ZHANG X, DENG X, et al. Multiway kernel independent component analysis based on feature samples for batch process monitoring[J]. Neurocomputing, 2009, 72(7-9):1584-1596. [7] PEP O, CAO Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial informatics, 2010, 6(1):36-45. [8] ZHAO S J, ZHANG J, XU Y. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7):763-772. [9] HUANG H, FENG H, PENG C. Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition[J]. Neurocomputing, 2012, 89(10):64-77. [10] ZHU Z, SONG Z. A novel fault diagnosis system using pattern classification on kernel FDA subspace[J]. Expert Systems with Application, 2011, 38(6):6895-6905. [11] ZHONG S, WEN Q, GE Z. Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 138:203-211. [12] JIANG B, ZHU X, HUANG D, et al. A combined canonical variate analysis and Fisher discriminant analysis(CVA—FDA)approach for fault diagnosis[J]. Computers & Chemical Engineering, 2015, 77:1-9. [13] SUGIYAMA M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007, 8(1):1027-1061. [14] YU J. Localized Fisher discriminant analysis based complex chemical process monitoring[J]. AIChE Journal, 2011, 57(7):1817-1828. [15] REN S, SONG Z, YANG M, et al. A novel multimode process monitoring method integrating LCGMM with modified LFDA[J]. Chinese Journal of Chemical Engineering, 2015, 23(12):1970-1980. [16] VAN M, KANG H. Wavelet kernel local fisher discriminant analysis with particle swarm optimization algorithm for bearing defect classification[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(12):3588-3600. [17] LI F, WANG J, CHYU M K, et al. Weak fault diagnosis of rotating machinery based on feature reduction with Supervised orthogonal local fisher discriminant analysis[J]. Neurocomputing, 2015, 168(C):505-519. [18] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[M]. London: Springer, 2001. [19] ADIL M, ABID M, KHAN A Q, et al. Exponential discriminant analysis for fault diagnosis[J]. Neurocomputing, 2016, 171(C):1344-1353. [20] 张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532-536. ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4):532-536. [21] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255. |
[1] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[2] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[3] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[4] | 赵英弘,何潇,周东华. 一类含有传感器故障的网络化系统容错估计[J]. 山东大学学报(工学版), 2017, 47(5): 71-78. |
[5] | 秦利国,何潇,周东华. 一种时延多智能体系统的分布式编队[J]. 山东大学学报(工学版), 2017, 47(5): 79-88. |
[6] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[7] | 包塔拉,马剑,甘祖旺. 基于几何特征与流形距离的锂电池健康评估[J]. 山东大学学报(工学版), 2017, 47(5): 157-165. |
[8] | 叶晓丰, 王培良, 杨泽宇. 基于混合MPLS的多阶段过程质量预报方法[J]. 山东大学学报(工学版), 2017, 47(5): 246-253. |
|