您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 187-194.doi: 10.6040/j.issn.1672-3961.0.2017.239

• • 上一篇    下一篇

基于因果拓扑图的工业过程故障诊断

王梦园1,2,张雄1,2,马亮1,2,彭开香1,2   

  1. 1. 北京科技大学自动化学院, 北京 100083;2. 北京科技大学钢铁流程先进控制教育部重点实验室, 北京 100083
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 作者简介:王梦园(1992— ),女,辽宁锦州人,硕士研究生,主要研究方向为故障诊断. E-mail: s20150635@xs.ustb.edu.cn

Fault diagnosis for industrial processes based on causal topological graph

WANG Mengyuan1,2, ZHANG Xiong1.2, MA Liang1,2, PENG Kaixiang1,2   

  1. 1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Key Laboratory for Advanced Control of Iron and Steel Process of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 基于因果拓扑图的工业过程故障诊断方法,将过程知识与数据驱动故障诊断方法结合,有效解决了故障定位和故障传播路径辨识问题。 在因果拓扑图的基础上,基于偏相关系数提出一种相关性指标(correlation index, CI)定量衡量因果拓扑中变量间的相关性,实现变量间因果性和相关性的良好结合。为得到准确的故障检测结果,采用概率主元分析(PPCA)对CI指标进行监测。在检测出故障后,应用重构贡献图(reconstruction-based contribution, RBC)和因果拓扑图,并引入加权平均值的概念辨识出最可能的故障传播路径。将提出的方法用于带钢热连轧过程,结果表明,基于因果拓扑图的故障诊断方法能够准确地定位故障源,辨识故障传播路径。

关键词: 故障诊断, 因果拓扑图, 相关性分析, 重构贡献图, 概率主元分析

Abstract: With the combination of the process knowledge and data driven methods, the fault diagnosis method based on causal topological graph could effectively deal with the fault location and fault propagation identification. A correlation index(CI)based on partial correlation coefficient was applied to the causal topological graph to analyze the correlation between variables quantitatively. The proposed CI was monitored via probabilistic principal component analysis method(PPCA)for fault detection. The concept of mean weighted value and causal topological graph were introduced in order to identify the optimal fault propagation path based on reconstruction-based contribution(RBC)after detecting a fault. The effectiveness of the method was verified by the application of hot strip mill process(HSMP). The results showed that the proposed method could effectively identify the fault roots and propagation paths.

Key words: PPCA, correlation analysis, fault diagnosis, causal topological graph, RBC

中图分类号: 

  • TP237
[1] 李晗,萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9.
[2] 刘强,柴天佑,秦泗钊,等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010,25(6):801-807. LIU Qiang, CHAI Tianyou, QIN Sizhao, et al. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process[J]. Control and Decision, 2010, 25(6): 801-807.
[3] 彭开香,马亮,张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(2):1-17. PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(2): 1-17.
[4] ZHANG Kai, HAO Haiyang, CHEN Zhiwen, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Journal of Process Control, 2015, 33(3): 112-126.
[5] MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414.
[6] MILLER P, SWANSON R E, HECKLER C E. Contribution plots: A missing link in multivariate quality control[J]. Applied Mathematics & Computer Science, 1998, 8(4): 775-792.
[7] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases[J]. Journal of Computer Science and Technology, 2012, 27(1): 1-23.
[8] 刘鹏鹏,左洪福,苏艳,等. 基于图论模型的故障诊断方法研究进展综述[J]. 中国机械工程,2013,24(5):696-703. LIU Pengpeng, ZUO Hongfu, SU Yan, et al. Review of research progresses for graph-based models in fault diagnosis method[J]. China Mechanical Engineering, 2013, 24(5): 696-703.
[9] THAMBIRAJAH J, BENABBAS L, BAUER M. Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history[J]. Computers & Chemical Engineering, 2009, 33(2): 503-512.
[10] JIANG Benben, ZHU Xiaoxiang, HUANG Dexian, et al. Canonical variate analysis-based monitoring of process correlation structure using causal feature representation[J]. Journal of Process Control, 2015, 32:109-116.
[11] TIPPING M E, BISHOP C M. Probabilistic principal component analysis[J]. Journal of the Royal Statistical Society:Series B, 1999: 611-622.
[12] GE Zhiqiang, SONG Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11): 2838-2849.
[13] ALCALA F C, QIN S J. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45(7):1593-1600.
[14] LI Gang, ALCALA F C, QIN S J, et al. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process[J]. IEEE Transactions on Control Systems Technology, 2011,19(5):1114-1127.
[15] LI Guojie, CHENG Xueqi. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Science, 2012, 27(6): 647-657.
[16] PERSON K. Mathematical contributions to the theory of evolution(Ⅲ): regression, heredity, and panmixia[J]. Philosophical Transactions of the Royal Society of London, 1986, 187: 253-318.
[17] KIM D, LEE I. Process monitoring based on probabilistic PCA [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123.
[18] NAKAMURA T A, PALHARES R M, CAMINHAS W M, et al. Adaptive fault detection and diagnosis using parsimonious Gaussian mixture models trained with distributed computing techniques[J]. Journal of the Franklin Institute, 2017, 354(6): 2543-2572.
[19] OSBORNE J W. Improving your data transformations: Applying the box-cox transformation[J]. Practical Assessment, Research & Evaluation, 2010, 15(12): 1-6.
[20] 周扬眉. 向量的加权平均值及其应用[J]. 测绘通报,2004(2):11-26. ZHOU Yangmei. Weighted average value of vector and its application[J]. Bulletin of Surveying and Mapping, 2004(2): 11-26.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[4] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[5] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[6] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[7] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[8] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[9] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[10] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[11] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[12] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[13] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[14] 李静立,王谦,张军,李磊磊. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102.
[15] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!