山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 187-194.doi: 10.6040/j.issn.1672-3961.0.2017.239
王梦园1,2,张雄1,2,马亮1,2,彭开香1,2
WANG Mengyuan1,2, ZHANG Xiong1.2, MA Liang1,2, PENG Kaixiang1,2
摘要: 基于因果拓扑图的工业过程故障诊断方法,将过程知识与数据驱动故障诊断方法结合,有效解决了故障定位和故障传播路径辨识问题。 在因果拓扑图的基础上,基于偏相关系数提出一种相关性指标(correlation index, CI)定量衡量因果拓扑中变量间的相关性,实现变量间因果性和相关性的良好结合。为得到准确的故障检测结果,采用概率主元分析(PPCA)对CI指标进行监测。在检测出故障后,应用重构贡献图(reconstruction-based contribution, RBC)和因果拓扑图,并引入加权平均值的概念辨识出最可能的故障传播路径。将提出的方法用于带钢热连轧过程,结果表明,基于因果拓扑图的故障诊断方法能够准确地定位故障源,辨识故障传播路径。
中图分类号:
[1] 李晗,萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9. [2] 刘强,柴天佑,秦泗钊,等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010,25(6):801-807. LIU Qiang, CHAI Tianyou, QIN Sizhao, et al. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process[J]. Control and Decision, 2010, 25(6): 801-807. [3] 彭开香,马亮,张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(2):1-17. PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(2): 1-17. [4] ZHANG Kai, HAO Haiyang, CHEN Zhiwen, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Journal of Process Control, 2015, 33(3): 112-126. [5] MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414. [6] MILLER P, SWANSON R E, HECKLER C E. Contribution plots: A missing link in multivariate quality control[J]. Applied Mathematics & Computer Science, 1998, 8(4): 775-792. [7] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases[J]. Journal of Computer Science and Technology, 2012, 27(1): 1-23. [8] 刘鹏鹏,左洪福,苏艳,等. 基于图论模型的故障诊断方法研究进展综述[J]. 中国机械工程,2013,24(5):696-703. LIU Pengpeng, ZUO Hongfu, SU Yan, et al. Review of research progresses for graph-based models in fault diagnosis method[J]. China Mechanical Engineering, 2013, 24(5): 696-703. [9] THAMBIRAJAH J, BENABBAS L, BAUER M. Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history[J]. Computers & Chemical Engineering, 2009, 33(2): 503-512. [10] JIANG Benben, ZHU Xiaoxiang, HUANG Dexian, et al. Canonical variate analysis-based monitoring of process correlation structure using causal feature representation[J]. Journal of Process Control, 2015, 32:109-116. [11] TIPPING M E, BISHOP C M. Probabilistic principal component analysis[J]. Journal of the Royal Statistical Society:Series B, 1999: 611-622. [12] GE Zhiqiang, SONG Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11): 2838-2849. [13] ALCALA F C, QIN S J. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45(7):1593-1600. [14] LI Gang, ALCALA F C, QIN S J, et al. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process[J]. IEEE Transactions on Control Systems Technology, 2011,19(5):1114-1127. [15] LI Guojie, CHENG Xueqi. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Science, 2012, 27(6): 647-657. [16] PERSON K. Mathematical contributions to the theory of evolution(Ⅲ): regression, heredity, and panmixia[J]. Philosophical Transactions of the Royal Society of London, 1986, 187: 253-318. [17] KIM D, LEE I. Process monitoring based on probabilistic PCA [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123. [18] NAKAMURA T A, PALHARES R M, CAMINHAS W M, et al. Adaptive fault detection and diagnosis using parsimonious Gaussian mixture models trained with distributed computing techniques[J]. Journal of the Franklin Institute, 2017, 354(6): 2543-2572. [19] OSBORNE J W. Improving your data transformations: Applying the box-cox transformation[J]. Practical Assessment, Research & Evaluation, 2010, 15(12): 1-6. [20] 周扬眉. 向量的加权平均值及其应用[J]. 测绘通报,2004(2):11-26. ZHOU Yangmei. Weighted average value of vector and its application[J]. Bulletin of Surveying and Mapping, 2004(2): 11-26. |
[1] | 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101. |
[2] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[3] | 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21. |
[4] | 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109. |
[5] | 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14. |
[6] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[7] | 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122. |
[8] | 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214. |
[9] | 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245. |
[10] | 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222. |
[11] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[12] | 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228. |
[13] | 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270. |
[14] | 李静立,王谦,张军,李磊磊. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102. |
[15] | 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95. |
|