山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 64-69.doi: 10.6040/j.issn.1672-3961.0.2016.467
杨炎a,b,c,王威强a,b,c*,潘路a,宋明大b,d
YANG Yana,b,c, WANG Weiqianga,b,c*, PAN Lua, SONG Mingdab,d
摘要: 针对在役和不可取样的设备应变时效价难问题,以服役后16Mn管材为研究对象,通过自动球压痕和常规力学试验,对比应变时效前后材料的屈服强度、抗拉强度、冲击吸收能和断裂韧度,并深入探讨自动球压痕试验在材料应变时效上的应用。试验结果表明,自动球压痕可以准确测定材料发生应变时效后的力学性能值,因此可以定期通过自动球压痕技术对在役设备进行力学性能测试,并根据实际测试力学性能来调整运行压力或更换设备,不但可以有利于设备的安全运行,同时可以延长设备的使用寿命。
中图分类号:
[1] 钱匡武,李效琦,萧林钢,等. 金属和合金中的动态应变时效现象[J]. 福州大学学报(自然科学版),2001,29(6):8-23. QIAN Kuangwu, LI Xiaoqi, XIAO Lingang. Dynamic strain aging phenomenon in metals and alloys[J]. Journal of Fuzhou University(Natural Science Edition), 2001, 29(6):8-23. [2] 钱匡武,彭开萍,陈文哲. 金属动态应变时效现象中的锯齿屈服[J]. 福建工程学院学报,2003(1):4-8. QIAN Kuangwu, PENG Kaiping, CHEN Wenzhe.Features of serrated yielding of dynamic strain aging phenomenon in metals and alloys[J]. Journal of Fujian College of Technology, 2003(1):4-8. [3] 崔好选. 临氢碳钢高压管失效分析与风险评估研究[D]. 济南:山东大学,2011. CUI Haoxuan. Study on the failure analysis and risk assessment of carbon steel high-pressure pipe under hydrogen environment[D].Jinan: Shandong University, 2011. [4] 孙忠孝,王金瑞,梁昌乾. 电站锅炉钢管应变时效脆化逆反试验研究[J]. 热力发电,1993(06):38-42. SUN Zhongxiao, WANG Jinrui, LIANG Changgan.Power station boiler steel pipe strain aging embrittlement resistance experiments[J].Thermal Power Generation, 1993(06):38-42. [5] KUMAR S, PINK E. Dynamic strain aging in a tungsten heavy metal[J]. Scripta Materialia, 1996, 35(9): 1047-1052. [6] 杨帅. 高锰钢时效的研究[D]. 秦皇岛:燕山大学,2009. YANG Shuai. The research on the limitation of high manganese steel[D]. Qinhuangdao: Yanshan University, 2009. [7] HERENU S, ALVAREZ ARMAS I, ARMAS A F. The inference of dynamic strain aging on the low cycle fatigue of duplex stainless steel[J]. Scripta Materialia, 2001, 45(6): 739-745. [8] 王威强,李梦丽,崔好选. 通过标准规避高压钢管应变时效脆化的发生[J]. 压力容器,2010,27(11):45-52. WANG Weiqiang, LI Mengli, CUI Haoxuan. Avoiding the occurrence of high-pressure steel pipe strain aging embrittlement through the standards[J]. Pressure Vessel Technology, 2010, 27(11):45-52. [9] 陈嘉亮,彭开萍,陈文. 3004铝合金的动态应变时效现象[J]. 有色金属,2008,58(1):1-4. CHEN Jialiang, PENG Kaiping, CHEN Wen. Dynamic strain aging of 3004 aluminum alloy[J]. Nonferrous Metals, 2008, 58(1):1-4. [10] 林娜,曾绍峰,彭开萍. AZ91D 变形镁合金的动态应变时效现象[J]. 中国有色金属学报,2010,20(8):1455-1460. LIN Na, ZENG Shaofeng, PENG Kaiping.Dynamic strain aging phenomenon of AZ91D wrought magnesium alloys[J].The Chinese Journal of Nonferrous Metals, 2010, 20(8):1455-1460. [11] 李效琦,陈文哲. 动态应变时效对18-8型奥氏体不锈钢强度的影响[J]. 福州大学学报(自然科学版),1989,17(2):30-34. LI Xiaoqi, CHEN Wenzhe. Dynamic strain aging on 18-8 lasting strength of austenitic stainless steel[J]. Journal of Fuzhou University(Natural Science Edition), 1989, 17(2):30-34. [12] 彭开萍,陈文哲,钱匡武. H68黄铜动态应变时效后的组织与性能[J]. 金属热处理,2006,31(2):53-56. PENG Kaiping, CHEN Wenzhe, QIAN Kuangwu. Microstructure and properties of H68 brass after dynamic strain aging[J]. Heat Treatment of Metals, 2006, 31(2):53-56. [13] 侯登义,徐洪庆,陈晔. NVB级船板应变时效敏感性试验[J]. 钢铁钒钛,2008,29(1):34-37. HOU Dengyi, XU Hongqing, CHEN Ye. Experiments of strain ageing sensibility of NVB ship plate steel[J]. Iron Steel Vanandium Titaium, 2008, 29(1):34-37. [14] ERASMUS L A. Nitrogen in steel[C] //Proceedings of the 1987 Australasian Conference on Materials for Industrial Development, Institute of Metals and Materials Australasia. Victoria, Australia: [s.n.] , 1987: 357-364. [15] 李锋钢,汤聚法. 海洋平台钢应变时效影响因素探讨[J]. 中国海洋平台,1990(4):28-30. LI Fenggang, TANG Jufa. Offshore platform steel strain aging factors discussed[J].China Offshore Platform, 1990(4):28-30. [16] 蒋智翔,杨小昭. 锅炉及压力容器受压元件强度[M]. 北京:机械工业出版社,1999:11. [17] 靳海成, 王勇, 陈玉华,等. 16Mn管线钢管在役焊接修复的研究[J]. 焊管,2005, 28(4):12-15. JIN Haicheng, WANG Yong, CHEN Yuhua, et al. Study of service welding repair of 16Mn pipeline[J].Welded Pipe and Tube, 2005, 28(4):12-15. [18] HAGGAG F M, Lucas G E. Determination of lüders strains and flow properties in steels from hardness/microhardness tests[J]. Metallurgical and Materials Transactions A, 1983, 14(8): 1607-1613. [19] HAGGAG F M. Field indentation microprobe for structural integrity evaluation: US, 4852397[P]. 1989-08-01. [20] 汤杰. 自动球压痕试验测定结构钢及其应变时效后力学性能的研究[D]. 济南:山东大学, 2013. TANG Jie. Research on the measurement of mechanical properties of structural steels and those affected by strain aging through automated ball indention test[D]. Jinan: Shandong University, 2013. [21] YANG Y, WANG W Q, SONG M D. The measurement of mechanical properties of pipe steels in service through continuous ball indentation test[J]. Procedia Engineering, 2015, 130(5):1742-1754. [22] 中华人民共和国质量监督检验检疫总局.高压化肥设备用无缝钢管:GB/T 6479—2000[S]. 北京:中国标准出版社,2000. [23] 中华人民共和国质量监督检验检疫总局.金属管压扁试验方法:GB/T 246—2007[S]. 北京:中国标准出版社,2007. [24] 中华人民共和国质量监督检验检疫总局.金属材料夏比摆锤冲击试验方法:GB/T 229—2007[S]. 北京:中国标准出版社,2007. [25] 中华人民共和国质量监督检验检疫总局.金属材料拉伸试验第一部分:室温试验方法:GB/T 228.1—2010[S]. 北京:中国标准出版社,2010. [26] 门长峰, 方陆鹏, 孙建军. 16Mn热轧钢板延性断裂韧度JIC的相关性研究[J]. 天津职业技术师范大学学报, 2008, 18(1):33-36. MEN Changfeng, FANG Lupeng, SUN Jianjun. Research of relation to ductile fracture toughness JIC for hot-rolled 16Mn steel[J].Journal of Tianjing University of Technology and Education, 2008, 18(1):33-36. |
[1] | 李明,朱召泉,刘琳. 混凝土压缩试验的改善及动态损伤[J]. 山东大学学报(工学版), 2017, 47(1): 68-75. |
[2] | 苏成功,刘燕,王威强, 王玉花. 压痕对不锈钢材料表面残余应力的影响[J]. 山东大学学报(工学版), 2017, 47(1): 90-96. |
[3] | 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119. |
[4] | 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126. |
[5] | 张宏博,解全一,岳红亚,孟庆宇. 掺合镀铜织物纤维电磁屏蔽砂浆性能研究[J]. 山东大学学报(工学版), 2016, 46(1): 56-61. |
[6] | 胡顺鹏1,赵洪石2,王冠聪2,曹成波1*,刘宏2*,李文波1,杨晓宇1. 一种胶原支架材料的结构与性能表征[J]. 山东大学学报(工学版), 2010, 40(4): 67-71. |
[7] | 孙丽莉, 贾玉玺, 孙胜, 马凤德. 界面强度对纤维复合材料破坏及力学性能的影响 [J]. 山东大学学报(工学版), 2009, 39(2): 101-103. |
[8] | 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95. |
[9] | 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 . |
[10] | 孙军龙,张卧波,邓建新,刘长霞 . B4C/TiO2/Al复合材料制备及其性能[J]. 山东大学学报(工学版), 2006, 36(6): 6-09 . |
|