您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 84-88.doi: 10.6040/j.issn.1672-3961.0.2016.342

• • 上一篇    下一篇

分数阶情绪模型的终端滑模控制混沌同步

李庆宾,王晓东   

  1. 郑州航空工业管理学院理学院, 河南 郑州 450046
  • 收稿日期:2016-08-30 出版日期:2017-06-20 发布日期:2016-08-30
  • 作者简介:李庆宾(1982— ),女,河南南阳人, 讲师,理学硕士,主要研究方向为混沌同步.E-mail:liqingbin82@126.com
  • 基金资助:
    国家自然科学青年基金资助项目(NSFC11501525);河南省科技厅软科学资助项目(142400411192)

Terminal sliding model control chaos synchronization of fractional-order emotion mode systems

LI Qingbin, WANG Xiaodong   

  1. College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450046, Henan, China
  • Received:2016-08-30 Online:2017-06-20 Published:2016-08-30

摘要: 应用驱动-响应同步方法,研究一类分数阶情绪模型的终端滑模混沌同步问题。基于Lyapunov稳定性理论和分数阶微积分的相关知识,构造一种非奇异的终端滑模面,通过设计连续的终端滑模控制器,给出主从系统在有限时间内快速实现混沌同步的设计方案。理论分析和仿真计算结果证明了这种控制方法的有效性。

关键词: 分数阶, 情绪模型, 滑模, 混沌同步

Abstract: The problem of terminal sliding model synchronization of fractional-order emotion mode systems was studied based on drive-response approach. Based on Lyapunov stability theory and fractional-order calculus theory, nonsingular sliding mode surface was designed. A designing project for the master-slave systems getting fast speed synchronization in finite-time was given by designing terminal sliding model controllers. Both the theoretical analysis and simulation results illustrated the effectiveness of this control method.

Key words: fractional-order, emotion model, sliding model, chaos synchronization

中图分类号: 

  • O482.4
[1] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
[2] WANG X, HE Y. Projective synchronization of fractional order chaotic system based on linear separation[J]. Physics Letters A, 2008, 372(4):435-441.
[3] 孙宁, 张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J]. 浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291.
[4] 余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J]. 北京航空航天大学学报,2014,40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mode adaptive synchronization for a class of fractional order chaotic systems with uncertainties[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280.
[5] 仲启龙,邵永辉,郑永爱.分数阶混沌系统的主动滑模同步[J].动力学与控制学报, 2015, 13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Active sliding mode synchronization of fractional order chaotic systems[J].Journal of Dynamics and Control, 2015, 13(1):18-22.
[6] 张燕兰. 分数阶Rayleigh-Duffing-like系统的自适应追踪广义投影同步[J].动力学与控制学报,2014,12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffing-like system[J]. Journal of Dynamics and Control, 2014, 12(4):348-352.
[7] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J]. Chinese Physics B, 2010, 19(2):502-505.
[8] LIU P, LIU S. Robust adaptive full state hybrid synchroniztion of chaotic complex systems with unknown parameters and external disturbances[J].Nonlinear Dynamics, 2012, 70(1):585-599.
[9] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J].Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[10] 徐瑞萍,高明美.自适应终端滑模控制不确定混沌系统的同步[J].控制工程,2016,23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic systems with uncertainty using adaptive terminal sliding mode controller[J]. Control Engineering of China, 2016, 23(5):715-719.
[11] ZAK M. Terminal attractor sin neural networks[J]. Neual Networks, 1989, 2(4):259-274.
[12] Man Zhihong, PAPLINSKI A P, WU H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactionon Automatic Control, 1994, 39(12):2464-2469.
[13] 颜闽秀,井元伟. 基于终端滑模控制的混沌系统的同步[J]. 东北大学学报(自然科学版), 2007, 28(12):1677-1680. YAN Minxiu, JING Yuanwei. Chaos systems synchronization based on terminal sliding mode control[J]. Journal of East North University(Science Edition), 2007, 28(12):1677-1680.
[14] 毛北行,李巧利.一类多涡卷系统的滑模有限时间混沌同步[J].吉林大学学报(理学版),2016,54(5):1131-1136. MAO Beixing, LI Qiaoli. Finite-time sliding mode chaos synchronization of a kind of multiscroll systems[J]. Journal of Jilin University(Science Edition), 2016, 54(5):1131-1136.
[15] 高俊山,宋歌,邓立为. 具有未知参数的混沌系统的有限时间滑模同步[J].控制与决策,2016,52(12):227-335. GAO Junshan, SONG Ge, DENG Liwei. Finite-time sliding mode synchronization control of chaotic systems with uncertain parameters[J]. Control and Decision, 2016, 52(12):227-335.
[16] 陈烨,李生刚,刘恒.基于自适应模糊控制的分数阶混沌系统同步[J].物理学报,2016,65(17):501-511. CHEN Ye, LI Shenggang, LIU Heng. Synchronization of fractional-order chaotic systems based on adaptive fuzzy control[J]. Acta Physics Sinica, 2016, 65(17):501-511.
[17] 李力,周昌乐.基于范德波尔方程的情绪模型[J].厦门大学学报(自然科学版),2011,50(4):703-706. LI Li, ZHOU Changle. Emotin model based on Van der pol equation[J]. Journal of Xiamen University(Science Edition), 2011, 50(4):703-706.
[18] 邢伟,茅青海. 受周期外界环境影响的Van der pol情绪模型[J].数学建模及其应用,2016,5(1):43-48. XING Wei, MAO Qinghai. Van der pol emotion model affected by cycle of external enviorment[J].Mathematical Modeling and Application, 2016, 5(1):43-48.
[19] YU S, YU X, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica, 2005, 41(11):1957-1964.
[20] MOHAMMAD P A, SOHRAB K, GHASSEM A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091.
[21] 梁家荣,谭红艳,樊仲光.广义系统的快速终端滑模控制[J].电子科技大学学报,2011,40(1):11-15. LIANG Jiarong, TAN Hongyan, FAN Zhongguang. Fast terminal sliding mode control for singular systems[J].Journal of University of Electronic Science and Technology of China, 2011, 40(1):11-15.
[1] 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报(工学版), 2018, 48(5): 85-90.
[2] 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94.
[3] 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60.
[4] 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54.
[5] 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115.
[6] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[7] 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36.
[8] 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83.
[9] 梁秋实,赵志诚. 基于分数阶滑模观测器的BLDCM无位置传感器控制[J]. 山东大学学报(工学版), 2017, 47(3): 96-101.
[10] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53.
[11] 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71.
[12] 赵以阁, 王玉振. 分数阶非线性三角系统的状态反馈控制器设计[J]. 山东大学学报(工学版), 2015, 45(6): 29-35.
[13] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
[14] 赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 2015, 45(5): 58-62.
[15] 王惠芳, 赵志诚, 张井岗. 一种高阶系统的分数阶IMC-IDμ控制器设计[J]. 山东大学学报(工学版), 2014, 44(6): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!