您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 123-130.doi: 10.6040/j.issn.1672-3961.0.2016.412

• 化学与环境 • 上一篇    

稠油沥青质胶质降粘机理的分子动力学模拟

崔青1,张长桥1*,修建新2,许士明2,卢丽丽2   

  1. 1. 山东大学化学与化工学院, 山东 济南 250100;2. 山东省质量技术监督局, 山东 济南 250002
  • 收稿日期:2016-11-07 出版日期:2017-04-20 发布日期:2016-11-07
  • 通讯作者: 张长桥(1957— ),男,浙江东阳人,教授,博士生导师,博士,主要研究方向为石油化工,聚合物材料. E-mail:zhangchqiao@sdu.edu.cn E-mail:qinglei2010@126.com
  • 作者简介:崔青(1993— ),女,山东威海人,硕士研究生,主要研究方向为聚合物材料. E-mail:qinglei2010@126.com

Molecular dynamic simulation on the mechanism of viscosity reduction to asphaltene and resin in heavy oil

CUI Qing1, ZHANG Changqiao1*, XIU Jianxin2, XU Shiming2, LU Lili2   

  1. 1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China;
    2. Shandong Bureau of Quality and Technical Supervision, Jinan 250002, Shandong, China
  • Received:2016-11-07 Online:2017-04-20 Published:2016-11-07

摘要: 为深入了解稠油降粘机理,进一步指导实验室合成路径,利用Materials Studio模拟软件验证了以苯乙烯、丙烯酸十八酯和马来酸酐为原料进行的降粘剂合成在分子动力学上的可行性;探究该降粘剂对沥青质、胶质缔合体系的解固作用,结果表明降粘剂分子凭借长直链和富含酯基、烷基的侧链结构可以有效解除缔合,实现原油降粘;进一步模拟由苯乙烯、丙烯酸十八酯、马来酸酐和丙烯酰胺为原料合成的四元聚合物及其降粘效果,推断出四元聚合物对稠油降粘的效果将优于三元聚合物。因此,该四元降粘聚合物将成为下一步实验室合成的目标产物,Materials Studio分子动力学模拟在材料合成中将发挥越来越重要的指导作用。

关键词: 沥青质, 降粘剂, 稠油, Materials Studio, 胶质, 分子动力学模拟

Abstract: To in-depth understand the mechanism of viscosity reducing agent to heavy oil and guide the synthesis in laboratory, the Materials Studio software was used to simulate the molecular dynamics of viscosity reducer synthesised by styrene, octadecyl acrylate and maleic anhydride. The results showed that the viscosity reducing agent could effectively remove the associating system by long straight chains and side chains rich in ester and alkyl group, and then improve the stability of asphaltene and resin. Another quaternary polymer synthesized by styrene, octadecyl acrylate, maleic anhydride and acrylamide and its viscosity reduction effect were further simulated, from which could deduce that the quaternary polymer and could behave better than that ternary one. Thus, this kind of quaternary polymer has been set as the target product in the real lab, and Materials Studio can play an important role in guiding synthesis process.

Key words: resin, asphaltene, Materials Studio, viscosity reducer, molecular dynamic simulation, heavy oil

中图分类号: 

  • TQ311
[1] 吴川. 双亲型稠油水热裂解降粘催化剂的合成及反应机理研究[D]. 北京:中国石油大学, 2011. WU Chuan. Study on synthesis and mechanism of amphoteric heavy oil hydrothermal pyrolysis and viscosity reduction catalyst[D]. Beijing: China University of Petroleum, 2011.
[2] 徐国瑞, 李翔, 谢坤. 稠油乳化降黏剂增油效果及其作用机理—以渤海稠油油藏储层和流体条件为例[J].石油化工高等学校学报, 2016, 29(1): 57-62. XU Guorui, LI Xiang, XIE Kun. Mechanism and oil displacement of heavy oil emulsification and viscosity reducer: a case study on heavy oil reservoir and fluid conditions of Bohai oilfield[J]. Journal of Petrochemical Universities, 2016, 29(1): 57-62.
[3] 孟科全, 唐晓东, 邹雯炆,等. 稠油降粘技术研究进展[J]. 天然气与石油, 2009, 27(3): 30-34. MENG Kequan, TANG Xiaodong, ZOU Wenwen, et al. Progress in research on heavy oil viscosity reduction technology[J]. Natural Gas and Oil, 2009, 27(3): 30-34.
[4] 陈玉祥, 陈军, 潘成松,等. 沥青质/胶质影响稠油乳状液稳定性的研究[J]. 应用化工,2009, 38(2):194-200. CHEN Yuxiang, CHEN Jun, PAN Chengsong, et al. Influences of asphaltenes and resins on the stability of heavy crude emulsions[J]. Application of Chemical Industry, 2009, 38(2):194-200.
[5] 王治红, 肖惠兰, 左毅. 开采与集输过程中稠油降粘技术的研究进展[J]. 天然气与石油, 2012, 30(6):1-4. WANG Zhihong, XIAO Huilan, ZUO Yi. Research progress of viscosity reducing technology in heavy oil production and gathering and transportation[J]. Natural Gas and Oil, 2012, 30(6):1-4.
[6] 吴本芳, 郭金波. 稠油油溶性降粘剂研究进展概况[J]. 油气储运,2003, 22(2):1-6. WU Benfang, GUO Jinbo. Advances in oil-soluble viscosity-reducing agent for viscous crude oils[J]. Oil & Gas Storage and Transportation, 2003, 22(2):1-6.
[7] 张宏民, 姜仁龙, 祁新宇等. 纳米PSMA-AM/SiO2复合材料的制备及在稠油降凝降黏中的应用[J]. 化工新型材料, 2015, 43(11): 210-212. ZHANG Hongmin, JIANG Renlong, QI Xinyu, et al. Preparation of nanosized PSMA-AM/SiO2 composite material and application in pour point and viscosity depressing of heavy oil[J]. New Chemical Materials, 2015, 43(11):210-212.
[8] 李建波, 梁发书, 郭川梅,等. 稠油降粘剂的合成及其作用机理分析[J]. 西南石油大学学报(自然科学版),2001, 23(1): 40-42. LI Jianbo, LIANG Fashu, GUO Chuanmei et al. Synthesis of a viscosity reducer and its mechanism analysis[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2001, 23(1): 40-42.
[9] 李庶峰, 沐宝权. 反冲色谱柱在分离渣油中胶质组分的应用[J]. 实验室研究与探索, 2001, 20(6): 65-67. LI Shufeng, MU Baoquan. Application of the reversing chromatographic column using in separating the resin from the residue[J]. Laboratory Research and Exploration, 2001, 20(6): 65-67.
[10] 朱静, 李传宪, 辛培刚. 降粘剂结构对稠油降粘效果的影响[J]. 石油化工高等学校学报, 2011, 24(3): 39-42. ZHU Jing, LI Chuanxian, XIN Peigang. The effect of structure of viscosity reducer to viscosity reducing effect for heavy oil[J]. Journal of Petrochemical Universities, 2011, 24(3): 39-42.
[11] 全红平,崔荣华,马艳君.等. 一种新型油溶性稠油降黏剂的制备与评价[J].精细石油化工, 2012, 29(5): 14-17. QUAN Hongping, CUI Ronghua, MA Yanjun, et al. Synthesis and evaluation of a new viscosity reducer for viscous crude oils[J]. Speciality Petrochemicals, 2012, 29(5): 14-17.
[12] 张付生, 王彪. 几种原油降凝降粘剂作用机理的红外光谱和X射线衍射研究[J]. 油田化学, 1995, 12(4): 347-352. ZHANG Fusheng, WANG Biao. Studies on the mechanisms in pour point depression and viscosity deduction by some pour point depressants/viscosity reducers[J]. Oilfield Chemistry, 1995, 12(4): 347-352.
[13] 周风山, 赵明方. 一种稠油降粘剂的研制与应用[J]. 西安石油学院学报(自然科学版), 2000, 15(2): 52-54. ZHOU Fengshan, ZHAO Mingfang. Preparation and application of a new viscosity-reducing agent for crude oil[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2000, 15(2): 52-54.
[14] 曹明, 曹旦夫, 吴杰,等. BEM-JN油基降粘剂作用机理与应用试验[J]. 油气储运, 2011(1):53-55. CAO Ming, CAO Danfu, WU Jie, et al. Mechanism and performance experiment of oil-based BEM-JN viscosity depressant[J]. Oil & Gas Storage and Transportation, 2011(1):53-55.
[15] 吴川,张汝生,张祖国,等. 超稠油改质降黏分子模拟及机理[J]. 石油学报, 2015, 36(3): 355-360. WU Chuan, ZHANG Rusheng, ZHANG Zuguo, et al. Molecular simulation and mechanism for upgrading and viscosity reduction of extra-heavy oil[J]. Acta Petrolei Sinica, 2015, 36(3): 355-360.
[16] 庄昌清, 岳红, 张慧军.分子模拟方法及模拟软件Materials Studio在高分子材料中的应用[J]. 塑料, 2010,39(4): 81-84. ZHUANG Changqing, YUE Hong, ZHANG Huijun. Molecular simulation methods and Materials Studio applications to macromolecular material[J]. Plastics, 2010, 39(4): 81-84.
[17] 曹斌, 高金森, 徐春明. 分子模拟技术在石油相关领域的应用[J]. 化学进展, 2004, 16(2): 291-298. CAO Bin, GAO Jinsen, XU Chunming. The applications of molecular simulation technology in the fields of petroleum[J]. Progress in Chemistry, 2004, 16(2): 291-298.
[18] KHABAZ F, KHARE R. Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: a molecular simulation study[J]. Journal of Chemical Physics, 2014, 141(21): 214904.
[19] WU G Z, HE L, CHEN D Y. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation[J]. Chemosphere, 2013, 92(11): 1465-1471.
[2] 陈辉. 特稠油化学复合吞吐工艺技术研究与应用[J]. 山东大学学报(工学版), 2010, 40(2): 113-120. CHEN Hui. Research and application on the chemical compound huffing and puffing technology of high viscous grade oil[J]. Journal of Shandong University(Engineering Science), 2010, 40(2): 113-120.
[21] 石静, 吕凯, 苑世领. 支链烷基苯磺酸盐在油水界面的分子动力学模拟[J]. 山东大学学报(工学版), 2012, 42(2): 77-82. SHI Jing, LYU Kai, YUAN Shiling. Molecular dynamics simulation of alkyl benzene sulfonate at the oil-water interface[J]. Journal of Shandong University(Engineering Science), 2012, 42(2): 77-82.
[22] 白艳艳, 曹月欣, 张宪玺, 等. SDS 对香豆素在SB-16 胶束增溶行为影响[J]. 山东大学学报(工学版), 2016,46(3): 99-105. BAI Yanyan, CAO Yuexin, ZHANG Xianxi, et al. The effects of SDS on C-343 solubilizing behavior in SB-16 micelle[J]. Journal of Shandong University(Engineering Science), 2016, 46(3): 99-105.
[23] 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89. WANG Lijuan, SHI Jing, ZHAO Fangjian. Molecular dynamics simulation of zwitterionic surfactant sulfobetaine at the vapor/liquid interface[J]. Journal of Shandong University(Engineering Science), 2014, 44(6): 83-89.
[24] 殷开梁, 邹定辉, 杨波,等. Materials Studio软件涉及力场中氢键的研究[J]. 计算机与应用化学, 2006, 23(12): 1335-1340. YIN Kailiang, ZOU Dinghui, YANG Bo, et al. Investigation of H-bonding for the related force fields in Materials Studio software[J]. Computer and Applied Chemistry, 2006, 23(12): 1335-1340.
[1] 白艳艳,曹月欣,张宪玺,张鲁格,孙德志,延辉,张翀. SDS对香豆素在SB-16胶束增溶行为影响[J]. 山东大学学报(工学版), 2016, 46(3): 99-105.
[2] 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89.
[3] 石静1,2,吕凯2,苑世领2*. 支链烷基苯磺酸盐在油水界面的分子动力学模拟[J]. 山东大学学报(工学版), 2012, 42(2): 77-82.
[4] 陈辉. 特稠油化学复合吞吐工艺技术研究与应用[J]. 山东大学学报(工学版), 2010, 40(2): 113-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!