您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 96-102.doi: 10.6040/j.issn.1672-3961.0.2016.236

• • 上一篇    下一篇

我国西北地区可再生能源基地对全球能源互联网构建的支撑作用

张恒旭1,2,施啸寒1,2,刘玉田1,2,杨冬3   

  1. 1.全球能源互联网(山东)协同创新中心, 山东 济南 250061;2.山东大学电气工程学院, 山东 济南 250061;3. 国网山东省电力公司电力科学研究院, 山东 济南 250002
  • 收稿日期:2016-06-20 出版日期:2016-08-20 发布日期:2016-06-20
  • 作者简介:张恒旭(1975— ),山东德州人,男,教授, 博导,博士,主要研究方向为电力系统运行与控制. E-mail: zhanghx@sdu.edu.cn
  • 基金资助:
    国家电网公司全球能源互联网基金项目资助

Support of the renewable energy base in northwest of China on the construction of global energy interconnection

ZHANG Hengxu1,2, SHI Xiaohan1,2, LIU Yutian1,2, YANG Dong3   

  1. 1. Collaborative Innovation Center for Global Energy Interconnection(Shandong), Jinan 250061, Shandong, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. Electirc Power Research Institute, Shandong Power Supply Company of State Grid, Jinan 250002, Shandong, China
  • Received:2016-06-20 Online:2016-08-20 Published:2016-06-20

摘要: 我国倡导的全球能源互联网是构建现代化能源供应体系,实现能源清洁、可持续利用的重要途径。本研究首先从能源发展战略需求角度,分析了大规模可再生能源基地与全球能源互联网的关系。随后,从自然条件、社会条件、技术条件等方面,分析了在我国西北地区建设大规模可再生能源基地的优势和潜力。最后,结合亚洲超级电网设想和未来世界能源格局,阐述了建设西北可再生能源基地的意义及其对构建全球能源互联网的支撑作用。

关键词: 全球能源互联网, 电能替代, 大规模可再生能源基地, 亚洲超级电网, 世界能源格局

Abstract: The global energy interconnetion advocated by China is a promising way to build a modern energy supply system, which can achieve clean and sustainable use of energy. First, the relationship between the large-scale renewable energy base and the global energy interconnetion was analyzed from the point of view of the energy development strategy demand. Second, the advantages and potential of the construction of large-scale renewable energy base in the northwest of China were demostrated from the aspects of the natural conditions, social conditions and technical conditions. Finally, the significance and the support of the large-scale renewable energy base in northwest of China on the construction of global energy interconnetion were expounded based on the elaboration of the planning ideas of Asian super power grid and the future world energy patterns.

Key words: electricity substitution, large-scale renewable energy base, Asian super grid, world energy patterns, global energy interconnection

中图分类号: 

  • TM315
[1] 路甬祥. 清洁、可再生能源利用的回顾与展望[J]. 科技导报, 2014(28):15-26. LU Yongxiang. Review and prospect of clean, renewable energy utilization[J]. Science & Technology Review, 2014(28):15-26.
[2] JACOBSON M Z, DELUCCHI M A. Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy Policy, 2011, 39(3):1154-1169.
[3] DELUCCHI M A, JACOBSON M Z. Providing all global energy with wind, water, and solar power, Part II: reliability, system and transmission costs, and policies[J]. Energy policy, 2011, 39(3):1170-1190.
[4] 《世界能源中国展望》课题组. 世界能源中国展望[M]. 北京: 社会科学文献出版社, 2013.
[5] 韩芳. 我国可再生能源发展现状和前景展望[J]. 可再生能源, 2010, 28(4): 137-140. HAN Fang. Development status and prospect of renewable energy in China[J]. Renewable Energy Resources, 2010, 28(4):137-140.
[6] 王益民. 全球能源互联网理念及前景展望[J]. 中国电力, 2016, 49(3): 1-5. WANG Yimin. Concept and prospect of global energy interconnection[J]. Electric Power, 2016, 49(3):1-5.
[7] 刘振亚. 构建全球能源互联网, 推动能源与环境协调发展[J]. 中国电力企业管理, 2014(23):14-17.
[8] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社, 2015.
[9] 张小平, 李佳宁, 付灏. 全球能源互联网对话工业4.0[J]. 电网技术, 2016(6): 1607-1611. ZHANG Xiaoping, LI Jianing, FU Hao. Global energy interconnection dialogue industry 4.0[J]. Power System Technology, 2016(6):1607-1611.
[10] 谢国辉, 李琼慧. 全球能源互联网技术创新重点领域及关键技术[J]. 中国电力, 2016, 49(3):18-23. XIE Guohui, LI Qionghui. Important fields and key technologies of innovation for global energy interconnection[J]. Electric Power, 2016, 49(3):18-23.
[11] 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014(16): 2513-2522. LIU Zhenya, ZHANG Qiping, DONG Cun, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014(16): 2513-2522.
[12] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014(29): 4999-5008. ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014(29):4999-5008.
[13] 中国气象局风能太阳能资源评估中心. 中国风能资源的详查和评估[J]. 风能, 2011(8):26-30. Wind Energy Resource Assessment Center of China Meteorological Administration. Investigation and evaluation of wind energy resources in the China[J]. Wind Energy, 2011(8): 26-30.
[14] 刘海燕, 方创琳, 蔺雪芹. 西北地区风能资源开发与大规模并网及非并网风电产业基地建设[J]. 资源科学, 2008, 30(11): 1667-1676. LIU Haiyan, FANG Chuanglin, LIN Xueqin. Wind energy resource exploitation and large-scale on-grid and off-grid wind power industrial base construction in northwest China[J]. Resources Science, 2008, 30(11): 1667-1676.
[15] 陈欣, 宋丽莉, 黄浩辉, 等. 中国典型地区风能资源特性研究[J]. 太阳能学报, 2011, 32(3): 331-337. CHEN Xin, SONG Lili, HUANG Haohui, et al. Study on characteristics of wind energy resources in two typical areas in China[J]. Acta Energiae Solaris Sinica, 2011, 32(3): 331-337.
[16] 周扬, 吴文祥, 胡莹, 等. 西北地区太阳能资源空间分布特征及资源潜力评估[J]. 自然资源学报, 2010(10): 1738-1749. ZHOU Yang, WU Wenxiang, HU Ying, et al. The temporal-spatical distribution and evaluation of potential solar energy resources in north west China[J]. Journal of Natural Resources, 2010(10): 1738-1749.
[17] 朱飙, 李春华, 方锋. 甘肃省太阳能资源评估[J]. 干旱气象, 2010, 28(2): 217-221. ZHU Biao, LI Chunhua, FANG Feng. Solar energy resources evaluation in Gansu Province[J]. Journal of Arid Meteorology, 2010, 28(2): 217-221.
[18] 韩启德. 太阳能资源分布[EB/OL].[2016-03-20]. http://amuseum.cdstm.cn/AMuseum/ diqiuziyuan/er2_2_1.html, 2016-04-04.
[19] 严陆光. 构建荒漠地区大规模综合能源基地的设想[J]. 科技导报, 2008(8):1. YAN Luguang. Construction of large integrated energy bases in desert areas[J]. Science & Technology Review, 2008(8):1.
[20] 严陆光, 周孝信, 张楚汉, 等. 关于筹建青海大规模光伏发电与水电结合的国家综合能源基地的建议[J]. 电工电能新技术, 2011, 29&30(1):1-9. YAN Luguang, ZHOU Xiaoxin, ZHANG Chuhan,et al. Suggestions on the construction of national comprehen- sive energy base for large-scale photovoltaic power generation and hydropower combination in Qinghai[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 29&30(1):1-9.
[21] LEWIS N S. Research opportunities to advance solar energy utilization[J/OL]. Science, 2016, 351(6271):[2016-06-02]. http://science. sciencemag.org/content/351/6271/aad1920.DOI:10.1126/science.aad1920
[22] 徐涛. 2014中国风电装机容量统计[C] // 中国农业机械工业协会风力机械分会. 北京: 中国农机工业协会风能设备分会风能产业, 2015.
[23] 中华人民共和国国家统计局. 中华人民共和国2015年国民经济和社会发展统计公报[M]. 北京: 中国统计出版社, 2015.
[24] 范松丽, 苑仁峰, 艾芊, 等. 欧洲超级电网计划及其对中国电网建设启示[J]. 电力系统自动化, 2015(10): 6-15. FAN Songli, YUAN Renfeng, AI Qian, et al. European supergrid project and its enlightenment to Chinas power grid[J]. Automation of Electric Power Systems, 2015(10):6-15.
[25] 王继业, 马士聪, 仝杰, 等. 中日韩电网关键技术发展及趋势分析[J]. 电网技术, 2016(2):491-499. WANG Jiye, MA Shicong, TONG Jie, et al. Current development and trend analysis of power grid key technologies in China, Japan and Republic of Korea[J]. Power System Technology, 2016(2):491-499.
[26] BP statistical review of world egergy[R/OL].[2016-03-20]. http://bpcom/statistical-review#BPstats, 2014.
[1] 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150.
[2] 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142.
[3] 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133.
[4] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[5] 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6.
[6] 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156.
[7] 赵康,王春义,杨冬,刘玉田. 考虑单相短路电流控制的特高压受端电网限流优化[J]. 山东大学学报(工学版), 2016, 46(4): 117-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .