山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 21-27.doi: 10.6040/j.issn.1672-3961.1.2016.078
莫小勇,潘志松*,邱俊洋,余亚军,蒋铭初
MO Xiaoyong, PAN Zhisong*, QIU Junyang, YU Yajun, JIANG Mingchu
摘要: 针对传统批处理特征选择方法处理大规模骨干网数据流存在时间和空间的限制,提出基于在线特征选择(online feature selection, OFS)的网络流异常检测方法,该方法将在线思想融入线性分类模型,在特征选择过程中,首先使用在线梯度下降法更新分类器,并将其限制在L1球内,然后用截断函数控制特征选择的数量。研究结果表明,提出的方法能充分利用网络流的时序性特点,同时减少检测时间且准确率和批处理方法相近,能满足网络流异常检测的实时性要求,为网络流分类和异常检测提供一种全新的思路。
中图分类号:
[1] 杨龙琪. 网络安全态势感知关键技术研究[D]. 南京: 中国人民解放军理工大学, 2015. YANG Longqi. Key techniques of network security situation awareness[D]. Nanjing: PLA University of Science and Technology, 2015. [2] MOORE A, ZUEV D, CROGAN M. Discriminators for use in flow-based classification[R]. UK: Computer Science Department, Queen Mary University of London, 2005. [3] LI Wei, MOORE A. A machine learning approach for efficient traffic classification[C] //Proceedings of 15th International Symposium on MASCOTS'07. Istanbul, Turkey: IEEE Press, 2007:310-317. [4] MOORE A, ZUEV D. Internet traffic classification using bayesian analysis techniques[J]. Acm Sigmetrics Performance Evaluation Review, 2005, 33(1):50-60. [5] KIM H, CLAFFY K, FOMENKOV M, et al. Internet traffic classification demystified: myths, caveats, and the best practices[C] //Proceedings of the 2008 ACM CoNEXT Conference. Madrid, Spain: ACM Press, 2008:1-12. [6] NGUYEN T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. Communications Surveys & Tutorials, 2008, 10(4):56-76. [7] ZHAO Zheng, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[R]. USA:School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 2010. [8] KATAKIS I, TSOUMAKAS G, VLAHAVAS I. On the utility of incremental feature selection for the classification of textual data streams[C] // Proceedings of the 10th Panhellenic Conference on Informatics. Volos, Greece: Springer Berlin Heidelberg Press, 2005:338-348. [9] WENERSTROM B, GIRAUD-CARRIER C. Temporal data mining in dynamic feature spaces[C] // Proceedings of the Sixth ICDM'06. Hong Kong, China: IEEE Computer Society Press, 2006:1141-1145. [10] MASUD M, CHEN Q, GAO J, et al. Classification and novel class detection of data streams in a dynamic feature space[C] // Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases. Barcelona, Spain: Springer Berlin Heidelberg Press, 2010:337-352. [11] YANG Longqi, HU Guyu, LI Dong, et al. Anomaly detection based on efficient Euclidean projection[J]. Security and Communication Networks, 2015, 8(17):3229-3237. [12] WIDROW B, HOFF M E. Adaptive switching circuits[C] // Proceedings of the 1960 IRE WESCON Convention Record. Los Angeles, USA: Institute of Radio Engineers Press, 1960:96-104. [13] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408. [14] FREUND Y, SCHAPIRE R E. Large margin classification using the perceptron algorithm[J]. Machine Learning, 1999, 37(3):277-296. [15] WANG Jialei, ZHAO Peilin, HOI S C H, et al. Online feature selection and its applications[J]. Knowledge and Data Engineering, 2014, 26(3):698-710. [16] ABERNETHY J, BARTLETT P, RAKHLIN A. Multitask learning with expert advice[C] // Proceedings of the 2007 COLT. San Diego, USA: Springer Berlin Heidelberg Press, 2007:484-498. [17] LUGOSI G, PAPASPILIOPOULOS O, STOLTZ G. Online multi-task learning with hard constraints[C] // Proceedings of the COLT'09. Montreal, Canada: ACL Press, 2009:315-320. [18] WARMUTH M K, KUZMIN D. Online variance minimization[J]. Machine Learning, 2012, 87(1):514-528. [19] DEKEL O, GILAD-BACHRACH R, SHAMIR O, et al. Optimal distributed online prediction using mini-batches[J]. The Journal of Machine Learning Research, 2012, 13(1):165-202. [20] JAIN P, KULIS B, DHILLON I S, et al. Online metric learning and fast similarity search[C] //Proceedings of the NIPS'09. Vancouver, Canada: NIPS Foundation Press, 2009:761-768. [21] BORDES A, ERTEKIN S, WESTON J, et al. Fast kernel classifiers with online and active learning[J]. The Journal of Machine Learning Research, 2012, 6(3):1579-1619. [22] DONOHO D L. Compressed sensing[J]. Information Theory, 2006, 52(4):1289-1306. [23] FONTUGNE R, BORGNAT P, ABRY P, et al. Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking[C] //Proceedings of the 2010 ACM CoNEXT conference. Philadelphia, USA: ACM Press, 2010:1-12. |
[1] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[2] | 孙静宇,余雪丽,陈俊杰, 李鲜花. 采样特异性因子及异常检测[J]. 山东大学学报(工学版), 2010, 40(5): 56-59. |
[3] | 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1-7. |
[4] | 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13-23. |
|