山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 74-78.doi: 10.6040/j.issn.1672-3961.2.2015.075
周凯1,2,元昌安1,2*,覃晓1,郑彦2,冯文铎2
ZHOU Kai1,2, YUAN Changan1,2*, QIN Xiao1, ZHENG Yan2, FENG Wenduo2
摘要: 为加快人脸识别速度和提高人脸识别率,将贝叶斯压缩感知算法进行核扩展并运用到人脸识别,改进局部特征统计方法,结合空间金字塔模型,用于人脸图像的特征提取。首先用局部特征统计提取图像特征,在此基础上再进行第二层局部统计,然后根据空间金字塔模型分层提取不同空间尺度的特征,最后运用核贝叶斯压缩感知算法分类。在AR和FERET人脸数据库上的试验结果表明,本研究算法相对于传统方法具有更好的性能。
中图分类号:
[1] FENG Zhizhao, YANG Meng, ZHANG Lei, et al. Joint discriminative dimensionality reduction and dictionary learning for face recognition[J]. Pattern Recognition, 2013, 46(8):2134-2143. [2] MING D, SAN A, CHELLAPPA C R. Robust face recognition from multi-view videos[J].IEEE Biometrics Compendium, 2014, 3(23):1105-1117. [3] TURK M, PENTLAND A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience, 1991, 3(1):71-86. [4] BELHUMEUR P, HESPANHA J, KRIEGMA D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transon Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. [5] YANG Mei, ZHANG Lei, SHIU S, et al. Robust kernel representation with statistical local features for face recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 22(6):900-912. [6] OJALA T, PIETIKINEN M, MAENPPA T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [7] NOWAK E, JURIE F, TRIGGS B. Sampling strategies for bag-of-eatures image classification[C] //European Conference on Computer Vision. Graz, Austria: Heidelberg, 2006, 2:490-503. [8] DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4):1289-1306. [9] WRINGHT J, YANG A, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [10] LI Y F, NGOM A. Sparse representation approaches for the classification of high-dimensional data[J].BMC Systems Biology, 2013, 7(4):114. [11] GAO S, TSANG W H, CHIA L T. Kernel sparse representation for image classification and face recognition[C] //European Conference on Computer Vision 2010. Crete, Greece: Heidelberg, 2010:1-14. [12] JI S H, XUE Y, CARIN L. Bayesian compressive sensing[J]. IEEE Trans on Signal Processing, 2008, 56(6):2346-2356. [13] ZHANG Zhilin, JOLLA L, JUNG T P, et al. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6):1186-1197. [14] WU Q, ZHANG Y D, AMIN M G, et al. Multi-task Bayesian compressive sensing exploiting intra-task dependency[J]. IEEE Signal Processing Letters, 2015, 22(4):430-434. [15] LIAN H. Sparse Bayesian hierarchical modeling of high-dimensional cluster problems[J]. Journal of Multivariate Analysis, 2010, 7(1):1728-1737. [16] KVRIAKIDES I, PRIBIC R. Sampling size in monte carlo Bayesian compressive sensing[C] //Sensor Array and Multichannel Signal Processing Workshop(SAM). ACoru(~overn)a, Spain:IEEE, 2014:397-400. [17] BI H, JIANG C, ZHANG B. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing[J].Geoscience and Remote Sensing Letters, 2015, 12(7):1546-1550. [18] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: spatial pyramid matching for recognizing naturalscene categories[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2169-2178. [19] WANG W, CHENG C W, XU D. Pyramid-based multi-scale LBP features for face recognition[C] //IEEE International Conference on In Multimedia and Signal Processing. Guilin, China: IEEE, 2011:151-155. [20] BARLA A, ODONE F, VERRI A. Histogram intersection kernel forimage classification[C] //Proceedings of the International Conference on Image Processing. Barcelona, Spain: IEEE, 2003:513-516. |
[1] | 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53. |
[2] | 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20. |
[3] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[4] | 徐庆, 段利国, 李爱萍, 阴桂梅. 基于实体词语义相似度的中文实体关系抽取[J]. 山东大学学报(工学版), 2015, 45(6): 7-15. |
[5] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
[6] | 任捷怡, 吴小俊. 一种改进的协方差鉴别学习方法[J]. 山东大学学报(工学版), 2015, 45(1): 9-12. |
[7] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
[8] | 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5. |
[9] | 郭慧玲,王士同*,闫晓波. 基于广义旋转不变性核函数的人脸识别[J]. 山东大学学报(工学版), 2012, 42(5): 71-79. |
[10] | 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34. |
[11] | 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51. |
[12] | 翟俊海1,翟梦尧1,张素芳2,王熙照1. 基于小波子空间集成的人脸识别[J]. 山东大学学报(工学版), 2012, 42(2): 1-6. |
[13] | 王熙照,白丽杰*,花强,刘玉超. null[J]. 山东大学学报(工学版), 2011, 41(4): 1-6. |
[14] | 王胜春,韩捷,李剑峰,李志农 . 基于模糊域和支持向量机的故障诊断方法[J]. 山东大学学报(工学版), 2006, 36(6): 116-120 . |
|