您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 74-78.doi: 10.6040/j.issn.1672-3961.2.2015.075

• • 上一篇    下一篇

基于核贝叶斯压缩感知的人脸识别

周凯1,2,元昌安1,2*,覃晓1,郑彦2,冯文铎2   

  1. 1. 广西师范学院计算机与信息工程学院, 广西 南宁 530001;2. 广西大学计算机与电子信息学院, 广西 南宁 530004
  • 收稿日期:2015-05-20 出版日期:2016-06-30 发布日期:2015-05-20
  • 通讯作者: 元昌安(1964— ),男,安徽肥东人,教授,研究生导师,主要研究方向为机器学习与数据挖掘. E-mail:yca@gxtc.edu.cn E-mail:zhoukai456@yahoo.com
  • 作者简介:周凯(1991— ),男,湖南湘乡人,硕士研究生,主要研究方向为模式识别与图像处理. E-mail:zhoukai456@yahoo.com
  • 基金资助:
    国家自然科学基金资助项目(61363037)

Face recognition based on kernel Bayesian compressive sensing

ZHOU Kai1,2, YUAN Changan1,2*, QIN Xiao1, ZHENG Yan2, FENG Wenduo2   

  1. 1. College of Computer and Information Engineering, Guangxi Teachers Education University, Nanning 530001, Guangxi, China;
    2. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2015-05-20 Online:2016-06-30 Published:2015-05-20

摘要: 为加快人脸识别速度和提高人脸识别率,将贝叶斯压缩感知算法进行核扩展并运用到人脸识别,改进局部特征统计方法,结合空间金字塔模型,用于人脸图像的特征提取。首先用局部特征统计提取图像特征,在此基础上再进行第二层局部统计,然后根据空间金字塔模型分层提取不同空间尺度的特征,最后运用核贝叶斯压缩感知算法分类。在AR和FERET人脸数据库上的试验结果表明,本研究算法相对于传统方法具有更好的性能。

关键词: 核函数, 局部特征统计, 贝叶斯压缩感知, 空间金字塔, 人脸识别

Abstract: In order to improve the speed and rate of face recognition, Bayesian compressive sensing algorithm was applied and its kernel extension to face recognition was proposed. Combined with the spatial pyramid model, statistical local feature was improved to extract the features of face images. Firstly, the statistical local feature was used as a feature extractor to obtain facial features and a second layer of local statistics was processed based on the former layer. Then the spatial pyramid was used to obtain features in different spatial scales in order to accomplish the final step of face recognition, the features were classified through kernel Bayesian compressive sensing. The experimental results on the basis of the AR and FERET databases demonstrated that this algorithm had better performance than other traditional ones.

Key words: face recognition, kernel function, statistical local feature, spatial pyramid model, Bayesian compressive sensing

中图分类号: 

  • TP391
[1] FENG Zhizhao, YANG Meng, ZHANG Lei, et al. Joint discriminative dimensionality reduction and dictionary learning for face recognition[J]. Pattern Recognition, 2013, 46(8):2134-2143.
[2] MING D, SAN A, CHELLAPPA C R. Robust face recognition from multi-view videos[J].IEEE Biometrics Compendium, 2014, 3(23):1105-1117.
[3] TURK M, PENTLAND A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
[4] BELHUMEUR P, HESPANHA J, KRIEGMA D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transon Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
[5] YANG Mei, ZHANG Lei, SHIU S, et al. Robust kernel representation with statistical local features for face recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 22(6):900-912.
[6] OJALA T, PIETIKINEN M, MAENPPA T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
[7] NOWAK E, JURIE F, TRIGGS B. Sampling strategies for bag-of-eatures image classification[C] //European Conference on Computer Vision. Graz, Austria: Heidelberg, 2006, 2:490-503.
[8] DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
[9] WRINGHT J, YANG A, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.
[10] LI Y F, NGOM A. Sparse representation approaches for the classification of high-dimensional data[J].BMC Systems Biology, 2013, 7(4):114.
[11] GAO S, TSANG W H, CHIA L T. Kernel sparse representation for image classification and face recognition[C] //European Conference on Computer Vision 2010. Crete, Greece: Heidelberg, 2010:1-14.
[12] JI S H, XUE Y, CARIN L. Bayesian compressive sensing[J]. IEEE Trans on Signal Processing, 2008, 56(6):2346-2356.
[13] ZHANG Zhilin, JOLLA L, JUNG T P, et al. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6):1186-1197.
[14] WU Q, ZHANG Y D, AMIN M G, et al. Multi-task Bayesian compressive sensing exploiting intra-task dependency[J]. IEEE Signal Processing Letters, 2015, 22(4):430-434.
[15] LIAN H. Sparse Bayesian hierarchical modeling of high-dimensional cluster problems[J]. Journal of Multivariate Analysis, 2010, 7(1):1728-1737.
[16] KVRIAKIDES I, PRIBIC R. Sampling size in monte carlo Bayesian compressive sensing[C] //Sensor Array and Multichannel Signal Processing Workshop(SAM). ACoru(~overn)a, Spain:IEEE, 2014:397-400.
[17] BI H, JIANG C, ZHANG B. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing[J].Geoscience and Remote Sensing Letters, 2015, 12(7):1546-1550.
[18] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: spatial pyramid matching for recognizing naturalscene categories[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2169-2178.
[19] WANG W, CHENG C W, XU D. Pyramid-based multi-scale LBP features for face recognition[C] //IEEE International Conference on In Multimedia and Signal Processing. Guilin, China: IEEE, 2011:151-155.
[20] BARLA A, ODONE F, VERRI A. Histogram intersection kernel forimage classification[C] //Proceedings of the International Conference on Image Processing. Barcelona, Spain: IEEE, 2003:513-516.
[1] 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53.
[2] 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20.
[3] 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5.
[4] 徐庆, 段利国, 李爱萍, 阴桂梅. 基于实体词语义相似度的中文实体关系抽取[J]. 山东大学学报(工学版), 2015, 45(6): 7-15.
[5] 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26.
[6] 任捷怡, 吴小俊. 一种改进的协方差鉴别学习方法[J]. 山东大学学报(工学版), 2015, 45(1): 9-12.
[7] 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18.
[8] 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5.
[9] 郭慧玲,王士同*,闫晓波. 基于广义旋转不变性核函数的人脸识别[J]. 山东大学学报(工学版), 2012, 42(5): 71-79.
[10] 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34.
[11] 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51.
[12] 翟俊海1,翟梦尧1,张素芳2,王熙照1. 基于小波子空间集成的人脸识别[J]. 山东大学学报(工学版), 2012, 42(2): 1-6.
[13] 王熙照,白丽杰*,花强,刘玉超. null[J]. 山东大学学报(工学版), 2011, 41(4): 1-6.
[14] 王胜春,韩捷,李剑峰,李志农 . 基于模糊域和支持向量机的故障诊断方法[J]. 山东大学学报(工学版), 2006, 36(6): 116-120 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[6] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[7] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[8] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .
[9] 李善评,胡振,孙一鸣,甄博如,张启磊,曹翰林 . 新型钛基PbO2电极的制备及电催化性能研究[J]. 山东大学学报(工学版), 2007, 37(3): 109 -113 .
[10] 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1 -6 .