山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 72-77.doi: 10.6040/j.issn.1672-3961.0.2015.381
熊文涛1,2,冯育强1
XIONG Wentao1,2, FENG Yuqiang1
摘要: 针对区间数多准则决策问题,扩展了传统的效用加性(utility additive, UTA)方法,提出了一种区间UTA方法。该方法首先根据传统的UTA方法,将参考方案的所有指标值转换为效用范围,即效用区间;然后利用区间数运算,得到参考方案的综合效用,进一步根据决策人的满意度和区间数的中点、半宽构建一个线性规划模型,计算出最小误差;在再优化分析中,以各指标下所有节点郊用的方差最小为目标函数,建立二次规划模型,计算出每一指标下各节点的效用值,利用效用值得到待评方案的综合效用区间和排序。算例表明,提出的区间UTA方法能有效地对方案排序,并与决策人以往的偏好信息一致。
中图分类号:
[1] JACQUET-LAGREZE E, SISKOS J. Assessing a set of additive utility functions for multicriteria decision-making, the UTA method[J]. European Journal of Operational Research, 1982, 10(2):151-164. [2] BEUTHE M, SCANNELLA G. Comparative analysis of UTA multicriteria methods[J]. European Journal of Operational Research, 2001, 130(2):246-262. [3] BOUS G, FORTEMPS P, GLINEUR F, et al. ACUTA:A novel method for eliciting additive value functions on the basis of holistic preference statements[J]. European Journal of Operational Research, 2010, 206(2):435-444. [4] KADZINSKI M, GRECO S, SŁOWINSKI R. RUTA:a framework for assessing and selecting additive value functions on the basis of rank related requirements[J]. Omega, 2013, 41(41):735-751. [5] GRECO S, MOUSSEAU V, SLOWINSKI R. Ordinal regression revisited:multiple criteria ranking using a set of additive value functions[J]. European Journal of Operational Research, 2008, 191(2):415-435. [6] FIGUEIRA J R, GRECO S, SLOWINSKI R. Building a set of additive value functions representing a reference preorder and intensities of preference:GRIP method[J]. European Journal of Operational Research, 2009, 195(2):460-486. [7] GRECO S, KADZINSKI M, MOUSSEAU V, et al. Robust ordinal regression for multiple criteria group decision:UTAGMS-GROUP and UTADISGMS-GROUP[J]. Decision Support Systems, 2012, 52(3):549-561. [8] KADZINSKI M, GRECO S, SŁOWINSKI R. Selection of a representative value function for robust ordinal regression in group decision making[J]. Group Decision & Negotiation, 2013, 22(22):429-462. [9] GRECO S, MOUSSEAU V, SŁOWINSKI R. Robust ordinal regression for value functions handling interacting criteria[J]. European Journal of Operational Research, 2014, 239(3):711-730. [10] KADZINSKI M, GRECO S, SŁOWINSKI R. Selection of a representative value function in robust multiple criteria ranking and choice[J]. European Journal of Operational Research, 2012, 217(3):541-553. [11] SPYRIDAKOS A, YANNACOPOULOS D. Incorporating collective functions to multicriteria disaggregation—aggregation approaches for small group decision making[J]. Annals of Operations Research, 2014, 227(1):119-136. [12] ATHAWALE V M, KUMAR R, CHAKRABORTY S. Decision making for material selection using the UTA method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1-4):11-22. [13] KHOLGHI M. Multi-criterion decision-making tools for wastewater planning management[J]. Journal of Agricultural Science & Technology, 2001, 3(3):281-286. [14] 段雪妍, 余思勤, 王效俐, 等. 基于UTAGMS方法的内河港口竞争力排序[J]. 上海海事大学学报, 2015, 36(1):6-11. DUAN Xueyan, YU Siqin, WANG Xiaoli, et al. Inland port competitiveness ranking based on UTAGMS method[J]. Journal of Shanghai Maritime University, 2015, 36(1):6-11. [15] 王坚强. 信息不完全确定的模糊多准则UTA方法[J]. 系统工程与电子技术, 2006, 28(4):545-550. WANG Jianqiang. Fuzzy multi-criteria UTA approach with uncertain information[J]. Systems Engineering & Electronics, 2006, 28(4):545-550. [16] EHSANIFAR M, ESHLAGHI A T, KERAMATI M A, et al. The development of UTASTAR method in fuzzy environment for supplier selection[J]. European Journal of Scientific Research, 2013, 108(3):317-326. [17] HAIDER H, SINGH P, ALI W, et al. Sustainability evaluation of surface water quality management options in developing countries:multicriteria analysis using fuzzy UTASTAR method[J]. Water Resources Management, 2015, 29(8):2987-3013. [18] PATINIOTAKIS I, APOSTOLOU D, MENTZAS G. Fuzzy UTASTAR:A method for discovering utility functions from fuzzy data[J]. Expert Systems with Applications:An International Journal, 2011, 38(12):15463-15474. [19] GANESAN K, VEERAMANI P. On arithmetic operations of interval numbers[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2005, 13(6):619-631. [20] SENGUPTA A, PAL T K. On comparing interval numbers[J]. European Journal of Operational Research, 2000, 127(1):28-43. [21] SISKOS Y, GRIGOROUDIS E. Preference disaggregation for measuring and analysing customer satisfaction:The MUSA method[J]. European Journal of Operational Research, 2002, 143(1):148-170. |
[1] | 晏力,阮艳丽,裴峥*. 语言值区间二元组能量平均算子及其应用[J]. 山东大学学报(工学版), 2013, 43(1): 115-122. |
[2] | 李修海1,于少伟2*. 基于正态分布区间数的云滴获取算法[J]. 山东大学学报(工学版), 2012, 42(5): 130-134. |
[3] | 于少伟. 基于区间数的模糊隶属函数构建[J]. 山东大学学报(工学版), 2010, 40(6): 32-35. |
|