您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 108-115.doi: 10.6040/j.issn.1672-3961.0.2015.162

• • 上一篇    下一篇

车辆外风挡结构对高速列车横风气动性能影响

牛纪强,梁习锋*,熊小慧,刘峰   

  1. 中南大学交通运输工程学院, 湖南 长沙 410075
  • 收稿日期:2015-06-01 出版日期:2016-04-20 发布日期:2015-06-01
  • 通讯作者: 梁习锋(1963— ),男,湖南长沙人,教授,博导,主要研究方向为列车空气动力学. E-mail:gszxlxf@163.com E-mail:jiqiang_niu@163.com
  • 作者简介:牛纪强(1988— ),男,山东临沂人,博士研究生,主要研究方向为列车空气动力学. E-mail:jiqiang_niu@163.com
  • 基金资助:
    高铁联合基金资助项目(U1134203,U1334205);中国铁路总公司科技研究开发计划资助项目(2013B001-A-2);湖南省研究生科研创新基金资助项目(CX2015B046)

Effect of outside vehicle windshield on aerodynamic performance of high-speed train under crosswind

NIU Jiqiang, LIANG Xifeng*, XIONG Xiaohui, LIU Feng   

  1. School of Traffic &
    Transportation Engineering, Central South University, Changsha 410075, Hunan, China
  • Received:2015-06-01 Online:2016-04-20 Published:2015-06-01

摘要: 采用三维、定常、不可压缩雷诺时均(navier-stokes, N-S)方程和重组化群(renormalization group, RNG) κ-ε双方程湍流模型,模拟3车编组高速列车气动性能。通过改变侧滑角研究不同风挡结构对列车气动性能影响。所选数值算法经过风洞试验验证,结果与试验数据变化规律一致,幅值相差不超过10%。不同风挡下列车表面压力系数沿车长分布规律一致,且幅值接近,风挡处车体表面压力系数差异显著,出现翻倍情况。随侧滑角增大,靠近风挡处列车表面压力系数分布发生明显变化。随侧滑角增大,不同风挡形式下的压力系数差异越显著,最大可达176%。随侧滑角增大,风挡的影响越显著;列车侧向力系数、升力系数和倾覆力矩系数的最大差异分别为17.71%、6.35%和7.52%;全封闭式风挡的列车抗倾覆能力相对最优,半风挡和平滑风挡对减小风环境下列车阻力有明显效果。

关键词: 高速列车, 气动力系数, 侧滑角, 风挡连接装置, 气动力矩系数

Abstract: Three-dimensional steady uncompressible Reynolds-averaged N-S(Navier-Stokes)equation and RNG(renormalization group)κ-ε equation turbulence model were used to simulate the aerodynamic performance of the three-carriage high-speed train. The effect of outside vehicle windshield on the aerodynamic performance of high-speed train was studied by change the angle of sideslip. The results showed that testing results generated by the selected algorithm were in agreement with experimental data, and the deviation between them was below 10%. The distribution of the surface pressure coefficient along train was not affected by the windshield, and the amplitude of them had no significant differences. There was significant difference on distribution of the pressure coefficient around the windshield among different cases, and doubled pressure coefficient appeared in some occasions. With the sideslip angle increased, the difference among the six cases was more and more obviously, the maximum difference was 176%. With the increase of sideslip angle, the influence of windshield on lateral force coefficient, lift coefficient and moment coefficient was more significant, maximum differences were 17.71%, 6.35% and 7.52%, respectively. Anti-overturning ability of train with the total enclosed windshield was relatively optimal, and drag force of train with semi typed windshield and smooth typed windshield in wind environment were reduced obviously.

Key words: angle of sideslip, aerodynamic moment coefficient, high-speed train, vestibule diaphragm device, aerodynamic force coefficient

中图分类号: 

  • U27
[1] 马淑红, 马韫娟, 李建群,等. 京津城际CRH3动车组大风天气条件下安全行车技术标准参数研究[J]. 铁道技术监督, 2009(2):7-9. MA Shuhong, MA Yunjuan, LI Jianqun, et al. Study on technical standard parameters for CRH3 safety along Beijing and Tianjin intercity railway on gale condition[J]. Railway Quality Control, 2009(2):7-9.
[2] 葛盛昌,蒋富强.兰新铁路强风地区风沙成因及挡风墙防风效果分析[J].铁道工程学报, 2009(5):1-4. GE Shengchang, JIANG Fuqiang. Analyses of the causes for wind disaster in strong wind area along Lanzhou-Xinjiang railway and the effect of wind-break[J]. Journal of Railway Engineering Society, 2009(5):1-4.
[3] 欧阳黎健, 刘丰芹. 风挡在机车车辆上的应用[J]. 电力机车与城轨车辆, 2008, 31(2):46-48. OUYANG Lijian, LIU Fengqin. Application of vestibule diaphragm on locomotive and railway vehicle[J]. Electric Locomotives & Mass Transit Vehicles, 2008, 31(2):46-48.
[4] 刘宏友. 高速列车中的关键动力学问题研究[J]. 中国铁道科学, 2004(1):136-138. LIU Youhong. Study on key dynamics problems of high-speed train[J]. China Railway Science, 2004(1):137-139.
[5] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006(1):1-9. TIAN Hongqi. Study evolvement of train aerodynamics in China [J]. Journal of Traffic and Transportation Engineering, 2006(1):1-9.
[6] 田红旗. 中国恶劣风环境下铁路安全行车研究进展[J]. 中南大学学报(自然科学版), 2010, 41(6):2435-2443. TIAN Hongqi. Research progress in railway safety under strong wind condition in China[J]. Journal of Central South University(Science and Technology), 2010, 41(6):2435-2443.
[7] 郗艳红, 毛军, 李明高,等. 高速列车侧风效应的数值模拟[J]. 北京交通大学学报, 2010, 34(1):14-19. XI Yanhong, MAO Jun, LI Minggao, et al. Numerical study on the crosswind effects of high-speed train[J]. Journal of Beijing Jiaotong University, 2010, 34(1):14-19.
[8] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(s 6-7):277-298.
[9] BELL J R, BURTON D, THOMPSON M, et al. Wind tunnel analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014(134):122-138.
[10] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015(136):127-137.
[11] 梁习锋,舒信伟.列车风挡对空气阻力影响的数值模拟研究[J].铁道学报, 2003, 25(1):34-37. LIANG Xifeng, SHU Xinwei. Numerical simulation research on train aerodynamic drag affected by the train windshield[J]. Journal of the China Railway Society, 2003, 25(1):34-37.
[12] 黄志祥, 陈立, 蒋科林. 高速列车模型编组长度和风挡结构对气动阻力的影响[J]. 实验流体力学, 2012, 26(5):36-41. HUANG Zhixiang, CHEN Li, JIANG Keli. Influence of length of train formation and vestibule diaphragmstructure on aerodynamic drag of high speed train mode[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5):36-41.
[13] 黄志祥, 陈立, 蒋科林. 高速列车减小空气阻力措施的风洞试验研究[J]. 铁道学报, 2012, 34(4):16-21. HUANG Zhixiang, CHEN Li, JIANG Keli. Wind tunnel test of air-drag reduction schemes of high-speed trains[J]. Journal of the China Railway Society, 2012, 34(4):16-21.
[14] 杨加寿, 蒋崇文, 高振勋,等. 车厢间风挡形式对高速列车气动性能的影响[J]. 铁道学报, 2012, 34(11):29-35. YANG Jiashou, JIANG Chongwen, GAO Zhenxun, et al. Influence of inter-car wind-shield schemes on aerodynamic performance of high-speed trains[J]. Journal of the China Railway Society, 2012, 34(11):29-35.
[15] 刘宏友,魏晓东,曾京,等.风挡连接装置对列车动力学性能的影响[J].交通运输工程学报, 2003(2):22-26. LIU Hongyou, WEI Xiaodong, ZENG Jing, et al. Effect of vestibule diaphragm device on train dynamic performance[J]. Journal of Traffic and Transportation Engineering, 2003(2):22-26.
[16] XIANG H, LI Y, WANG B, et al. Numerical simulation of the protective effect of railway wind barriers under crosswinds[J]. International Journal of Rail Transportation, 2015, 3(3):151-163.
[17] 高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响[J].交通运输工程学报, 2004(2):45-48. GAO Guangjun, TIAN Hongqi, ZHANG Jian. Crosswind affection on double container train[J]. Journal of Traffic and Transportation Engineering, 2004(2):45-48.
[18] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(38):469-514.
[19] 牛纪强,周丹,李志伟,等.高速列车通过峡谷风区时气动性能研究[J].铁道学报, 2014(6):9-14. NIU Jiqiang, ZHOU Dan, LI Zhiwei, et al. Research on aerodynamic performance of high-speed train through canyon wind zone[J]. Journal of the China Railway Society, 2014(6):9-14.
[1] 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[4] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[5] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[6] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[7] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[8] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[9] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[10] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .