山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 10-14.doi: 10.6040/j.issn.1672-3961.0.2015.296
梅清琳1,2,张化祥1,2*
MEI Qinglin1,2, ZHANG Huaxiang1,2*
摘要: 提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离,通过提高所选邻近点的质量,优化数据的局部邻域,使降维后的数据具有更好的可分性。试验结果表明,该算法具有较高的准确率,优于传统的邻域保持嵌入算法。
中图分类号:
[1] 周志华, 杨强. 机器学习及其应用[M].北京:清华大学出版社, 2011:87-95. [2] EGECIOGLU O, FERHATOAMANOGLU H, OGRAS U. Dimensionality reduction and similarity computation by inner-product approximations[J].IEEE Transactions on Knowledge and Data Engineering, 2004, 16(6):714-726. [3] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396. [4] 赵连伟, 罗四维, 赵艳敞, 等. 高维数据流形的低维嵌入及嵌入维数研究[J]. 软件学报, 2005, 16(8):1423-1430. ZHAO Lianwei, LUO Siwei, ZHAO Yanchang, et al. Study on the low-dimensional embedding and the embedding dimensionality of manifold of high-dimensional data[J].Journal of Software, 2005, 16(8):1423-1430. [5] TENENBAUMe J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000, 290(5500):2319-2323. [6] HUANG Hong, HUANG Yunbiao. Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification[J].Neurocomputing, 2014, 136(2014):224-234. [7] JOLLIFFE I T. Principle component analysis[M]. Berlin: Springer-Verlag, 1986: 384-389. [8] WANG Fei, WANG Xin, ZHANG Daoqiang, et al. MarginFace: A novel face recognition method by average neighborhood margin maximization[J]. Pattern Recognition, 2009, 42(11):2863-2875. [9] BELHUMEUR P N, HESPANDA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. [10] HE Xiaofei, NIYOGI P. Locality preserving projections[J]. Advances in Neural Information Processing Systems, 2005, 45(1):186-197. [11] HAM J, LEE D D, SAUL L K. Semi-supervised alignment of manifolds[J]. International Workshop on Articial Intelligence & Statistics, 2005:120-127. [12] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326. [13] HE Xiaofei, CAI Deng, YAN Shuicheng, et al. Neighborhood preserving embedding[C] //Proceedings of the Tenth IEEE International Conference on Computer Vision Workshops. New York, USA: IEEE, 2005:1208-1213. [14] YIN Fei, JIAO L C, SHANG Fanhua, et al. Sparse regularization discriminant analysis for face recognition[J]. Neurocomputing, 2014, 128:341-362. [15] ZHANG Wei, XUE Xiangyang, LU Hong, et al. Discriminant neighborhood embedding for classification[J]. Pattern Recognition, 2006, 39(11):2240-2243. [16] GUI Jie, SUN Zhenan, JIA Wei, et al. Discriminant sparse neighborhood preserving embedding for face recognition[J]. Pattern Recognition, 2012, 45(8):2884-2893. [17] CHENG Bin, YANG Jianchao, YAN Shuicheng, et al. Learning with l1-graph for image analysis[J]. IEEE Transactions on Image Processing, 2010, 19(4):858-866. [18] QIAO Lishan, CHEN Songcan, TAN Xiaoyan. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1):331-341. [19] 包兴, 张莉, 赵梦梦, 等. 基于类别信息的邻域保持嵌入算法[J]. 计算机科学, 2015, 42(5):94-97. BAO Xing, ZHANG Li, ZHAO Mengmeng, et al. Label information-based neighbourhood preserving embedding[J]. Computer Science, 2015, 42(5):94-97. [20] WANG Yong, WU Yi. Complete neighborhood preserving embedding for face recognition[J]. Pattern Recognition, 2010, 43(3):1008-1015. [21] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C] //Proceedings of the Second IEEE Workshop on Applications of Computer Vision. New York, USA: IEEE, 1994:138-142. [22] LEE K C, HO J, KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):684-698. |
[1] | 钱文光,李会民. 一种相似子空间嵌入算法[J]. 山东大学学报(工学版), 2018, 48(1): 8-14. |
[2] | 张玉玲,尹传环. 基于SVM的安卓恶意软件检测[J]. 山东大学学报(工学版), 2017, 47(1): 42-47. |
[3] | 文志强,朱文球,胡永祥. 半调图像的分类方法[J]. 山东大学学报(工学版), 2013, 43(4): 7-12. |
[4] | 张永军1,刘金岭2,于长辉3. 基于词贡献度的垃圾短信分类方法[J]. 山东大学学报(工学版), 2012, 42(5): 87-90. |
[5] | 王熙照,白丽杰*,花强,刘玉超. null[J]. 山东大学学报(工学版), 2011, 41(4): 1-6. |
[6] | 崔燕,范丽亚. 高维数据正定核与不定核的KPCA变换阵比较[J]. 山东大学学报(工学版), 2011, 41(1): 17-23. |
[7] | 贺广南,杨育彬*. 基于流形学习的图像检索算法研究[J]. 山东大学学报(工学版), 2010, 40(5): 129-136. |
[8] | 曾雪强1,李国正2. 基于偏最小二乘降维的分类模型比较[J]. 山东大学学报(工学版), 2010, 40(5): 41-47. |
[9] | 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1-10. |
[10] | 张丽梅1,2 ,乔立山1,2 ,陈松灿1 . 基于张量模式的特征提取及分类器设计综述[J]. 山东大学学报(工学版), 2009, 39(1): 6-14. |
|