山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 1-9.doi: 10.6040/j.issn.1672-3961.2.2015.033
• 机器学习与数据挖掘 • 下一篇
景运革1,2,李天瑞1*
JING Yunge1,2, LI Tianrui1*
摘要: 在现实中,许多数据库都是动态变化的,非增量约简方法处理这些数据需要花费大量的时间和空间。增量技术是处理动态数据的有效方法。首先介绍了计算知识粒度的增量机制,然后提出了基于知识粒度的增量约简算法,当一些对象增加到决策表时,能够利用原有决策表的知识粒度和约简,快速计算出增加对象后的知识粒度和约简,并通过理论分析验证了增量方法可以减少计算属性约简的时间复杂度,最后用增量方法和非增量方法对UCI数据集进行一系列试验。试验结果表明,所提增量算法在处理动态数据时能够节省大量的计算时间。
中图分类号:
[1] SUN Lin, XU Jiucheng, TIAN Yun. Feature selection using rough entropy-based uncertainty measures in incomplete decision systems[J].Knowledge-Based Systems, 2013(36):206-216. [2] YAO Yiyu, ZHONG Ning. Potential applications of granular computing in knowledge discovery and data mining[C] // Proceedings of the World Multi-conference on Systemics, Cybernetics and Informatics.[S.l.] : Betascript Publishing, 1999:573-580. [3] ROMAN W, SWINIARSKI, ANDRZEJ Skowron A. Rough set methods in feature selection and recognition[J].Pattern Recognition Letters, 2003, 24(6):833-849. [4] ANANTHANARAYANA V S, NARASIMHA Murty M, SUBRAMANIAN D K. Tree structure for efficient data mining using rough sets[J].Pattern Recognition Letter, 2003, 24(6):851-862. [5] SHUSAKU Tsumoto. Automated extraction of medical expert system rules from clinical databases based on RST[J]. Information Sciences,1998,112(1-4):67-84. [6] 王磊,叶军. 知识粒度计算的矩阵方法及其在属性约简中的应用[J].计算机工程与科学, 2013,35(3):98-102. WANG Lei, YE Jun. Matrix-based approach for calculating knowledge granulation and its application in attribute reduction[J]. Computer Engineering & Science, 2013, 35(3):98-102. [7] 翟俊海,高原原,王熙照,等. 基于划分子集的属性约简算法[J].山东大学学报(工学版),2011,41(4):25-28. ZHAI Junhai, GAO Yuanyuan, WANG Xizhao,et al. An attribute reduction algorithm based on a partition subset[J]. Journal of Shandong University(Engineering Science), 2011, 41(4):25-28. [8] 邱桃荣,刘清,黄厚宽. 多值信息系统中基于粒计算的多级概念获取算法[J].模式识别与人工智能,2009,22(1):22-27. QIU Taorong, LIU Qing, HUANG Houkuan. Granular computing based hierarchical concept capture algorithm in multi-valued information system[J].Pattern Recognition and Artificial Intelligence, 2009, 22(1):22-27. [9] 钟珞,梅磊,郭翠翠,等. 粒矩阵属性约简启发式算法[J].小型微型计算机系统,2011,2(3):516-520. ZHONG Lu, MEI Lei, GUO Cuicui,et al. Heuristic algorithm for attribute reduction on granular matrix[J]. Journal of Chinese Computer Systems, 2011, 2(3):516-520. [10] ZENG Anping, LI Tianrui, LIU Dun, et al. A fuzzy rough set approach for incremental feature selection on hybrid information systems[J]. Fuzzy Sets and Systems, 2014(258):39-60. [11] LIANG Jiye, WANG Feng, DANG Chuangyin, et al. A group incremental approach to feature selection applying rough set technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):1-31. [12] QIAN Yuhua, LIANG Jiye, PEDRYCZB W. et al. Positive approximation: An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9-10):597-618. [13] 刘洋,冯博琴,周江卫. 基于差别矩阵的增量式属性约简完备算法[J].西安交通大学学报,2007,41(2):158-161. LIU Yang, FENG Boqin, ZHOU Jiangwei. Complete algorithm of increment for attribute reduction based on discernibility matrix[J]. Journal of Xi'an Jiaotong University, 2007, 41(2):158-161. [14] CHEN Hongmei, LI Tianrui, LUO Chuan, et al. A rough set-based method for updating decision rules on attribute values coarsening and refining[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12):2886-2899. [15] 杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. YANG Ming. An incremental updating algorithm for attribute reduction based on improved discernibility matrix[J]. Chinese Journal of Computer, 2007, 30(5):815-822. [16] SHU Wenhao, SHEN Hong. Updating attribute reduction in incomplete decision systems with the variation of attribute set[J].International Journal of Approximate Reasoning, 2014, 55(3):867-884. [17] LI Shaoyong, LI Tianrui, HU Jie. Update of approximations in composite information systems[J]. Knowledge-Based Systems, 2015(83):138-148. [18] 刘清.Rough set及Rough推理[M].北京:科学出版社,2001:7-16. [19] YAO Yiyu. Probabilistic approaches to rough sets[J]. Expert Systems, 2003, 20(5):287-297. [20] 苗夺谦,范世栋.知识粒度的计算及其应用[J].系统工程理论与实践,2002,22(1):48-56. MIAO Duoqian, FAN Shidong. The calculation of knowledge granulation and its application[J]. Systems Engineer-Theory & Practice, 2002, 22(1):48-56. [21] 徐章艳,刘作鹏,杨炳儒,等.一个复杂度max(O(|C||U|,O(|C|2|U/C|))的快速约简算法[J].计算机学报,2006,29(3):391-398. XU Zhangyan, LIU Zuopeng, YANG Bingru, et al. A quickly attribute reduction algorithm with complexity of max(O(|C||U|,O(|C|2|U/C|))[J]. Chines Journal of Computer, 2006, 29(3):391-398. |
[1] | 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14. |
[2] | 陈玉明,吴克寿,谢荣生. 基于相对知识粒度的决策表约简[J]. 山东大学学报(工学版), 2012, 42(6): 8-12. |
[3] | 李慧1,2,胡云1,3,李存华1. 基于粗糙集理论的瓦斯灾害信息特征提取技术[J]. 山东大学学报(工学版), 2012, 42(5): 91-95. |
[4] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
[5] | 吴克寿,陈玉明,曾志强. 基于邻域关系的决策表约简[J]. 山东大学学报(工学版), 2012, 42(2): 7-10. |
[6] | 李国和1,2,岳翔1,2,李雪3,吴卫江1,2,李洪奇1. 一种面向连续型属性的特征选取方法[J]. 山东大学学报(工学版), 2011, 41(6): 1-6. |
[7] | 翟俊海,高原原,王熙照,陈俊芬. 基于划分子集的属性约简算法[J]. 山东大学学报(工学版), 2011, 41(4): 24-28. |
[8] | 李成栋,雷红,史开泉 . 一种基于粗集的模糊系统设计方法[J]. 山东大学学报(工学版), 2006, 36(4): 73-80 . |
[9] | 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 . |
[10] | 刘纪芹,张萍,颜建军 . 变异知识与它的过滤特征[J]. 山东大学学报(工学版), 2006, 36(1): 93-99 . |
|