您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2015, Vol. 45 ›› Issue (5): 51-57.doi: 10.6040/j.issn.1672-3961.0.2015.021

• • 上一篇    

离散时间线性脉冲奇异系统的有限时间滤波

仝云旭1, 李桂花1, 刘婷婷2, 朱玉清1   

  1. 1. 南阳理工学院数理学院, 河南 南阳 473004;2. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2020-05-26
  • 作者简介:仝云旭(1981- ), 男, 河南南阳人,讲师,博士,主要研究方向为稳定性与滤波. E-mail: 147853509@qq.com
  • 基金资助:
    青年科学基金资助项目(61403242);陕西省自然科学基础研究计划资助项目(2014JM1019);陕西省教育厅2014年专项科研资助项目(14JK1225)

Finite-time filtering for discrete-time linear impulsive singular systems

TONG Yunxu1, LI Guihua1, LIU Tingting2, ZHU Yuqing1   

  1. 1. School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, Henan, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Published:2020-05-26

摘要: 研究了离散时间线性脉冲奇异系统的有限时间滤波问题。 利用线性矩阵不等式方法, 首先给出了滤波误差系统有限时间稳定和满足性能要求的充分条件, 然后给出了脉冲奇异系统有限时间滤波问题可解的充分条件, 并且给出了滤波器的设计方法,推广了脉冲系统有限时间滤波理论结果。 最后通过数值算例表明了结论的可行性。

关键词: 有限时间滤波, 脉冲系统, 离散系统, 奇异系统

Abstract: The finite-time filtering problem for discrete-time linear impulsive singular systems was investigated. Firstly, sufficient conditions for the filter error system which is finite-time stable and satisfies the performance requirements were given by using the linear matrix inequality method. Secondly, sufficient conditions for solving the finite-time filter problem of impulsive singular systems were presented, and the designing method of filter was provided, which generalizes the finite-time filtering theories of impulsive systems. Finally, a numerical example was given to demonstrate the feasibility of the conclusion.

Key words: finite-time filtering, impulsive system, discrete-time system, singular system

中图分类号: 

  • O231
[1] WEN S, ZENG Z, HUANG T. H filtering for neutral systems with mixed delays and multiplicative noises[J]. IEEE Transactions on Circuits and Systems, 2012, 59(11):820-824.
[2] YOU J, GAO H, BASIN M V. Further improved results on filtering for discrete time-delay systems[J]. Signal Processing, 2013, 93(7):1845-1852.
[3] LIAN J, MU C, SHI P. Asynchronous H filtering for switched stochastic systems with time-varying delay[J]. Information Sciences, 2013, 224(1):200-212.
[4] AMATO F, ARIOLA M, COSENTION C. Finite-time stability of linear time-varying systems: analysis and controller design[J]. IEEE Transactions on Automatic Control, 2010, 55(4):1003-1008.
[5] AMATO F, ARIOLA M, COSENTION C. Finite-time stabilization of impulsive dynamical linear systems[J]. Nonlinear Analysis: Hybird System, 2011, 5(1):89-101.
[6] AMATO F, DE TOMMASI G, PIRONTI A. Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems[J]. Automatica, 2013, 49(8):2546-2550.
[7] XU J, SUN J. Finite-time stability of linear time-varying singular impulsive systems[J]. IET Control Theory and Applications, 2010, 4(10):2239-2244.
[8] AMBROSINO R, CALABRESE F, COSENTINO C, et al. Sufficient conditions for finite-time stability of impulsive dynamical systems[J]. IEEE Transactions on Automatic Control, 2009, 54(4):861-865.
[9] 严志国, 张国山. 一类非线性随机不确定系统有限时间H滤波[J]. 控制与决策, 2012, 27(3):419-430. YAN Zhiguo, ZHANG Guoshan. Finite-time H filtering for a class of nonlinear stochastic uncertain systems[J]. Control and Decision, 2012, 27(3):419-430.
[10] CHENG J, ZHU H, ZHONG S M, et al. Finite-time boundness of H filtering for switching discrete-time systems[J]. International Journal of Control, Automation, and Systems, 2012, 10(6):1129-1135.
[11] ZHANG Y, LIU C, SONG Y. Finite-time H filtering for discrete-time MaKovian jump systems[J]. Journal of The Franklin Institute, 2013, 350(6):1579-1595.
[12] 仝云旭, 吴保卫, 李文姿. 分段脉冲系统的有限时间稳定与滤波[J]. 应用数学, 2014, 27(4):738-746. TONG Yunxu, WU Baowei, LI Wenzi. Finite-time stability and Filtering for Piecewise Impulsive Systems[J]. Mathematic Applicata, 2014, 27(4):738-746.
[13] XU J, SUN J. Finite-time filtering for discrete-time linear impulsive systems[J]. Signal Processing, 2012, 92(11):2718-2722.
[14] TONG Y, WU B, LIU L, et al. Remark on “Finite-time filtering for discrete-time linear impulsive systems”[J]. Signal Processing, 2014, 94(1):531-534.
[1] 焦建民1 ,孙小军1 ,吴保卫2 . 带有非线性扰动的不确定奇异时滞系统的保性能控制[J]. 山东大学学报(工学版), 2009, 39(2): 64-69.
[2] 崔鹏,张承慧,张玫 . 线性离散奇异系统的最优估计新方法[J]. 山东大学学报(工学版), 2007, 37(4): 13-18 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!