您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2015, Vol. 45 ›› Issue (5): 43-50.doi: 10.6040/j.issn.1672-3961.0.2014.355

• 控制科学与工程 • 上一篇    

串级时滞过程的二自由度Smith预估控制

张井岗,马文廷,赵志诚   

  1. 太原科技大学电子信息工程学院, 山西 太原 030024
  • 发布日期:2020-05-26
  • 作者简介:张井岗(1965- ),男,山西运城人,教授,博士,主要研究方向为鲁棒控制,智能控制及其应用.E-mail:jg-zhang65@163.com
  • 基金资助:
    山西省自然科学基金资助项目(2011011011-2);山西省回国留学人员科研资助项目(2013-092)

Two-degree-of-freedom Smith predictor control for cascade time delay process

ZHANG Jinggang, MA Wenting, ZHAO Zhicheng   

  1. School of Electronics and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
  • Published:2020-05-26

摘要: 提出了串级时滞过程的二自由度Smith预估控制方法。主回路采用由设定值跟随控制器和干扰抑制控制器组成的二自由度Smith预估控制结构,副回路采用内模控制结构。主回路两个控制器运用解析设计方法设计,使系统设定值跟随性和干扰抑制特性解耦。理论分析和仿真结果表明,该方法结构简单,控制器参数调整方便,系统具备良好的设定值跟随特性、干扰抑制特性和鲁棒性。

关键词: 串级时滞过程, 二自由度, Smith预估控制, 内模控制, 鲁棒性

Abstract: A novel two-degree-of-freedom(2DOF)Smith predictor control scheme for cascade time-delay process was proposed. The 2DOF Smith predictor control structure, which consist of setpoint tracking controller and disturbance rejection controller, was adopted in the main loop. And the internal model control structure was adopted in the secondary loop. The two controllers were respectively designed by an analytical method in the main loop. The setpoint tracking characteristics was decoupled from the disturbance rejection characteristics. Theoretical analysis and simulation results showed that the proposed control structure was simple, the controller parameters could be adjusted conveniently, and the system has a very good dynamic response performance and robustness.

Key words: cascade time-delay process, two degree of freedom, Smith predictor control, internal model control, robustness

中图分类号: 

  • TP273
[1] 潘永湘, 杨延西, 赵跃. 过程控制与自动化仪表[M]. 北京:机械工业出版社,2007:177-189.
[2] 方康玲.过程控制系统[M]. 武汉:武汉理工大学出版社, 2007:104-131.
[3] 张井岗.过程控制与自动化仪表[M]. 北京:北京大学出版社, 2007:218-226.
[4] SHINSKEY F G.过程控制系统-应用、设计与整定[M]. 北京:清华大学出版社, 2004:171-202.
[5] VISIOLI A, PIAZZI A. An automatic tuning method for cascade control systems[C] //Proceedings of the 2006 International Conference on Control Applications. Munich, Germany: IEEE, 2006:2968-2973.
[6] SADASIVARAO M V, CHIDAMBARAM M. PID controller tuning of cascade control systems using genetic algorithm[J].Journal of Indian Institute of Science, 2006, 86(7):343-354.
[7] KAYA I, TAN N, ATHERTON D P. Improved cascade control structure for enhanced performance[J].Journal of Process Control, 2007, 17(1):3-16.
[8] JENG J C, LEE M W. Identification and controller tuning of cascade control systems based on closed-loop step responses[C] //Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes. Furama Riverfront, Singapore: The International Federation of Automatic Control, 2012, 8(1):414-419.
[9] LEE Y, PARK S, LEE M. PID controller tuning to obtain desired closed loop responses for cascade control systems[J].Industrial & Engineering Chemistry Research, 1998, 37(5):1859-1865.
[10] KAYA I. Improving performance using cascade control and a Smith predictor[J]. ISA Transactions, 2001, 40(3):223-234.
[11] VILANOVA R, ARRIETA O. PID tuning for cascade control system design[C] //Proceedings of 2008 CCECE. Niagara Falls, Canada: Electrical and Computer Engineering, 2008:1775-1778.
[12] YIN C, HUI H, YUE J, et al. Cascade control based on minimum sensitivity in outer loop for processes with time delay[J].Journal of Central South University, 2012, 19(5):2689-2696.
[13] ALFARO V M, VILANOVA R, ARRIETA O. Robust tuning of two-degree-of-freedom(2-DoF)PI/PID based cascade control systems[J]. Journal of Process Control, 2009, 19(10):1658-1670.
[14] DANIEL Petersson, JOHAN Lofberg. Model reduction using a frequency-limited H2-cost[J].Systems & Control Letters, 2014, 67(3):32-39.
[15] DOUGLAS J. Practical process control using control station[M]. Storrs: Control Station LLC, 2004:180-193.
[16] CHENG Y Q, BHASKARAN T, XUE D. Practical tuning rule development for fractional order proportional and integral controllers[J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(2):021403.
[17] TAVAKOLI K M, HAERI M. Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers[J]. ISA Transactions, 2011, 50(3):432-442.
[18] JIN C Y, RYU K H, SUNG S W, et al. PID auto-tuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model[J]. Journal of Process Control, 2014, 24(1):113-128.
[19] MALWATKAR G M, SONAWANE S H, WAGHMARE L M. Tuning PID controllers for higher-order oscillatory systems with improved performance[J]. ISA Transactions, 2009, 48(3): 347-353.
[20] LIU Tao, GAO Furong. Enhanced IMC design of load disturbance rejection for integrating and unstable processes with slow dynamics[J].ISA Transactions, 2011, 50(9):239-248.
[21] JIN Q B, LIU Q. IMC-PID design based on model matching approach and closed-loop shaping[J].ISA Transactions, 2014, 53(8):462-473.
[22] ZHAO Z C, LIU Z Y, ZHANG J G. IMC-PID tuning method based on sensitivity specification for process with time-delay[J].Journal of Central South University of Technology:English Edition, 2011, 18(4):1153-1160.
[23] 刘开培, 饶玲娜, 刘杰, 等.纯滞后系统的鲁棒性自调整Dahlin-Smith控制[J].仪器仪表学报, 2002, 23(3):376-377. LIU Kaipei, RAO Lingna, LIU Jie, et al. Pure delay system robustness self-adjusting Dahlin-Smith control[J].Journal of Scientific Instrument, 2002, 23(3):376-377.
[24] 尹成强, 岳继光.非自衡时滞对象的改进内模控制[J].控制与决策, 2009, 24(10):1593-1597. YIN Chengqiang, YUE Jiguang.Modified internal model control for integrating plants with time delay[J].Control and Decision, 2009, 24(10):1593-1597.
[25] DOLA G P, SOMANATH M. An improved parallel cascade control structure for processes with time delay[J].Journal of Process Control, 2012, 22(6):884-898.
[1] 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115.
[2] 侯明冬,王印松,田杰. 积分时滞对象的一种内模PID鲁棒控制方法[J]. 山东大学学报(工学版), 2016, 46(5): 64-67.
[3] 王惠芳, 赵志诚, 张井岗. 一种高阶系统的分数阶IMC-IDμ控制器设计[J]. 山东大学学报(工学版), 2014, 44(6): 77-82.
[4] 葛凯蓉, 常发亮, 董文会. 基于局部敏感直方图的稀疏表达跟踪算法[J]. 山东大学学报(工学版), 2014, 44(5): 14-19.
[5] 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5.
[6] 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78.
[7] 周长辉1, 胡永健2,余绍鹏1. 鲁棒的源扫描仪辨识算法设计[J]. 山东大学学报(工学版), 2011, 41(2): 62-65.
[8] 黄斌. 基于离散趋近律的变结构系统控制[J]. 山东大学学报(工学版), 2011, 41(1): 45-48.
[9] 李岳阳,王士同. 基于鲁棒性神经模糊网络的脉冲噪声滤波算法[J]. 山东大学学报(工学版), 2010, 40(5): 164-170.
[10] 赵永国,贾磊,蔡文剑 . 一种积分过程PID自整定方法[J]. 山东大学学报(工学版), 2008, 38(1): 48-51 .
[11] 解淑英,张承进 . 一种输入饱和受限系统的自适应逆控制[J]. 山东大学学报(工学版), 2006, 36(6): 62-66 .
[12] 鉴萍,李歧强 . 力反馈遥操作机器人系统的内模控制[J]. 山东大学学报(工学版), 2006, 36(5): 49-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!