山东大学学报 (工学版) ›› 2015, Vol. 45 ›› Issue (5): 1-12.doi: 10.6040/j.issn.1672-3961.2.2014.155
• 机器学习与数据挖掘 •
李新玉1, 徐桂云1,任世锦2,3*,杨茂云1,2
LI Xinyu1, XU Guiyun1, REN Shijin2,3*, YANG Maoyun1,2
摘要: 基于流形学习、稀疏表示和鉴别分析理论,提出一种基于鉴别流形的统计不相关稀疏投影非负矩阵分解(discriminative manifold—based uncorrelated sparse projective NMF, DMUPNMF)算法。该方法继承了线性投影NMF优点,充分利用了数据集的局部和非局部几何鉴别信息,能够从数据集中抽取不相关鉴别特征,且分解结果具有良好的数据局部表示和稀疏性;给出多乘更新规则求解优化算法并证明其收敛性,还给出投影梯度优化算法以提高收敛速度。为解决大规模数据处理中计算量和存储空间过大问题,提出一种从训练集选取少量代表性样本学习DMUPNMF方法。大量的实验表明,该算法优于现有的改进NMF算法。
中图分类号:
[1] CHEN Yan, ZHANG Jiemi, CAI Deng, et al. Nonnegative local coordinate factorization for image representation[J]. IEEE Transactions on Image Processing, 2013, 22(3):969-980. [2] GUAN Naiyang, TAO Dacheng, LU Zhigang, et al. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent[J]. IEEE Transactions on Image Processing, 2011, 20(7):2030-2048. [3] ZHENG C H, HUANG D S, ZHANG L, et al. Tumor clustering using nonnegative matrix factorization with gene selection[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 15(2):599-607. [4] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2011, 23(6):902-913. [5] YOO Jiho, CHOI Seungjin. Orthogonal nonnegative matrix tri-factorization for co-clustering:multiplicative updates on Stiefel manifolds[J]. Information Processing and Management, 2010, 46(5):721-732. [6] LEE Seokjin, PARK Sangha, SUNG Koengmo. Beamspace-domain multichannel nonnegative matrix factorization for audio source separation[J]. IEEE Signal Processing Letters, 2012, 19(1):43-47. [7] ZHOU Zhou, LIANG Ruiyu, ZHAO Li, et al. Unsupervised learning of phonemes of whispered speech in a noisy environment based on convolutive non-negative matrix factorization[J]. Information Sciences, 2014(257):115-126. [8] LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geomscience and Remote Sensing, 2013, 51(5):2815-2926. [9] ZHAO Miao, BU Jiajun, CHEN Chun, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5):1327-1337. [10] LIANG Z. Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications[J]. Signal Process, 2010, 90(7):2150-2163. [11] QIAN Y, JIA S, ZHOU J, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions Geoscience Remote Sense, 2011, 49(11):4282-4297. [12] ZHI Ruicong, FLERIl Markus, RUAN Qiuqi, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Transactions on Systems, Man, and Cybernatics—Part B:Cybernetics, 2011, 41(1):38-50. [13] 杜世强, 石玉清, 王维兰,等. 基于流形正则化判别的因子分解[J]. 山东大学学报:理学版, 2013, 48(5):63-69. DU Shiqiang, SHI Yuqing, WANG Weilan, et al. Manifold regularization-based nonnegative matrix factorization[J]. Journal of Shandong University:Natural Science, 2013, 48(5):63-69. [14] ZAFEIRIOUS S, TEFAS A, BUCIU I, et al. Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification[J]. IEEE Transactions on Neural Networks, 2006, 17(3):683-695. [15] KOTSIA I, ZAFEIRIOUS S, PITAS I. A novel discriminant nonnegative matrix factorization algorithm with applications to facial image characterization problems[J].IEEE Transaction on Information Forensics and Security, 2007, 2(3):588-595. [16] ZOIDI Olga, TEFAS Anastasios, PITAS Ioannis. Multiplicative update rules for concurrent nonnegative matrix factorization and maximum margin classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(3):422-434. [17] YE Jun, JIN Zhong. Non-negative matrix factorization based on fuzzy K nearest neighbor graph and its applications[J]. The Institution of Engineering and Technology Computer Vision, 2013, 7(5):346-353. [18] ZHI Ruicong, FLIERL Markus, RUAN Qiuqi, et al. Graph-preserving sparse nonngegative matrix factorization with application to facial expression recognition[J]. IEEE Transactions on System, Man and cybernetics-Part B:Cybernetics, 2011, 41(1):38-51. [19] GUAN Naiyang, TAO Dacheng, LUO Zhigang, et al. Online nonnegative matrix factorization with robust stochastic approximation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1087-1099. [20] HU Lirui, DAI Liang, WU Jianguo. Convergent projective non-negative matrix factorization with Kullback-Leibler divergence[J]. Pattern Recognition Letters, 2014(36):15-21. [21] GONG Pinghua, ZHANG Changshui. Efficient nonnegative matrix factorization via projected newton method[J]. Pattern Recognition, 2012, 45(9):3557-3565. [22] LIAO Ruiqi, ZHANG Yifan, GUAN Jihong, et al. Cloud NMF:A map reduce implementation of nonnegative matrix factorization for large-scale biological datasets[J]. Genomics, Proteomics & Bioinformatics, 2014, 12(1):48-51. [23] IVICA Kopriva, IVANKA Jeric. Blind separation of analyze in nuclear magnetic resonance spectroscopy:Improved model for nonnegative matrix factorization[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137:47-56. [24] VIRTANEN T. Nonaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria[J]. IEEE Transactions on Audio, Speech, Language Process, 2007, 15(3):1066-1074. [25] CICHOCKI A, SHISHKINA S L, MUSHA T, et al. EEG filtering based on blind source separation(BSS)for early detection of Alzheimers disease[J]. Clinic Neurophysiology, 2005(116):729-737. [26] 殷海青, 刘红卫. 一种基于L1稀疏正则化和非负矩阵分解的盲源信号分离新算法[J]. 西安电子科技大学学报, 2010, 37(5):835-841. YIN Haiqing, LIU Hongwei. New blind source separation algorithm based on L1 sparse regularization and nonnegative matricx factorization[J]. Journal of Xidian University, 2010, 37(5):835-841. [27] KIRBIZ S, GUNSEL B. Perceptually enhanced blind single-channel music source separation by non-negative matrix factorization[J]. Digital Signal Processing, 2014(23):646-658. [28] CICJOCKI A, ZDUNCK R. Multilayer nonnegative matrix factorization using projected gradient approaches[J]. International Journal of Neural Networks, 2007, 7(6):431-436. [29] YAN-WANG Jim Jing, GAO Xin. Beyond cross-domain learning:multiple-domain nonnegative matrix factorization[J]. Engineering Applications of Artificial Intelligence, 2014(28):181-189. [30] PAN Binbin, LAI Jianhuang, CHEN Wensheng. Nonlinear nonnegative matrix factorization based on Mercer kernel construction[J]. Pattern Recognition, 2011, 44(10—11):2800-2810. [31] 李乐, 章毓晋. 非负矩阵分解算法综述[J]. 电子信息学报, 2008, 36(4):737-743. LI Le, ZHANG Yujin. Riews on nonnegative matrix factorization[J]. Journal of Electronics & Information Technology, 2008, 36(4):737-743. [32] WANG Yuxiong, ZHANG Yujin. Nonnegative matrix factorization:a comprehensive review[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6):1336-1353. [33] 王洪元,封磊,冯燕,等. 流形学习算法在中文文本分类中的应用[J]. 山东大学学报:工学版, 2013, 42(4):8-13. WANG Hongyuan, FENG Lei, FENG Yan, et al. Manifold leanrning and its appplicaiton in text classification[J]. Journal of Shandong University:Engineering Science, 2013, 42(4):8-13. [34] LIU X, YAN S, JIN H. Projective nonnegative graph embedding[J]. IEEE Transaction on Image Processing, 2010, 19(5):1126-1137. [35] HE Ran, ZHENG Weishi, TAN Tieniu, et al.Half-quadratic-based iterative minimization for robust sparse representation[J]. IEEE Transactions on Patterns Analysis and Machine Intelligence, 2014, 36(2):261-275. [36] YU Xuelian, WANG Xuegang. Uncorrelated discriminant locality preserving projections[J]. IEEE Signal Processing Letters, 2008(15):361-364. [37] 夏海英,杜海明,徐鲁辉,等. 基于自适应词典学习和稀疏表示的人脸表情识别[J]. 山东大学学报:工学版,2014,44(1):45-49. XIA Haiying, DU Haiming, XU Luhui, et al. Facial expression recognition based on adaptive dictionary learning and sparse representation[J]. Journal of Shandong University:Engineering Science, 2014, 44(1):45-49. [38] LU Haiping, KONSTANTINOS N, PLATANIOTIS V, et al. Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition[J]. IEEE Transactions on Neural Networks, 2009, 20(1):103-123. [39] 张少捷, 王振雷, 钱锋. 基于LTSA的FS-SVDD方法及其在化工过程监控中的应用[J]. 化工学报, 2010, 61(8):1894-1900. ZHANG Shaojie, WANG Zhenglei, QIAN Feng. FS-SVDD based on LTSA and its application in chemical process monitoring[J]. CISE Journal, 2010, 61(8):1894-1900. [40] NIE Feiping, ZENG Zinan, TSANG Ivor W, et al. Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering[J]. IEEE Trans Neural Network, 2011, 22(11):1796-1808. |
[1] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
[2] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
[3] | 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50. |
[4] | 白树忠,刘 琚,孙国霞 . 基于最小均方误差和稀疏特征的欠定盲源分离[J]. 山东大学学报(工学版), 2008, 38(4): 97-101 . |
|