您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 56-61.doi: 10.6040/j.issn.1672-3961.0.2014.272

• 机械工程 • 上一篇    下一篇

基于最小吉布斯自由能的疏水表面接触角模型

宋昊, 刘战强, 史振宇, 蔡玉奎   

  1. 山东大学机械工程学院 高效洁净机械制造教育部重点实验室, 山东 济南 250061
  • 收稿日期:2014-09-24 修回日期:2015-01-20 出版日期:2015-04-20 发布日期:2014-09-24
  • 通讯作者: 刘战强(1969-),男,山东济南人,教授,博导,主要研究方向为高效加工.E-mail:melius@sdu.edu.cn E-mail:melius@sdu.edu.cn
  • 作者简介:宋昊(1990-),男,山东济南人,硕士研究生,主要研究方向为微加工.E-mail:sdusonghao@gmail.com
  • 基金资助:
    高等学校博士点专项科研基金资助项目(20130131120032);山东省优秀中青年科学家科研奖励基金资助项目(BS2013ZZ003);中国博士后科学基金面上一等资助项目(2013M540544)

Model of contact angle of hydrophobic surface based on minimum Gibbs free energy

SONG Hao, LIU Zhanqiang, SHI Zhenyu, CAI Yukui   

  1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-09-24 Revised:2015-01-20 Online:2015-04-20 Published:2014-09-24

摘要: 在光滑表面Young氏方程和粗糙表面Cassie-Baxter模型的基础上,建立了二维情况下基于最小吉布斯自由能的接触角预测模型,并且对预测模型进行了修正,考虑斜壁对气-液接触线的影响。利用接触角预测模型及其修正研究微结构材料和尺寸参数对接触角大小的影响,从而指导疏水性微结构设计。研究结果表明,疏水性基底相对于亲水性基底加工出的微结构有更大的接触角提升趋势。增大微结构间隙宽度,减小凸台宽度,减小微结构斜壁角度,有利于接触角的提升。

关键词: 能量模型, 疏水性, 斜壁, 接触线, 接触角

Abstract: Based on the function of Young used for smooth surface and the model of Cassie-Baxter used for rough surface, the prediction model for contact angle of hydrophobic surface based on minimum Gibbs free energy was proposed. The model for contact angle prediction was then modified by considering the influence of skew walls on the contact line between gas-liquid. The effects of hydrophobic surface material properties and geometric parameters on contact angle were analyzed based on the modified model. The results showed that, under the same condition of machined micro-surface, the contract angle on the hydrophobic surface root was larger than that on the hydrophilic one. Besides, for the Cassie-Baxter model, the larger radio between the width of groove and the width of convex was, the larger contract angle was.

Key words: contact line, hydrophobic, energy method, contact angle, skew wall

中图分类号: 

  • TG174.4
[1] DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929):4775-4806.
[2] SUN T, WANG G, FENG L, et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43(3):357-360.
[3] SUN T, TAN H, HAN D, et al. No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10):959-963.
[4] BLOSSEY R. Self-cleaning surfaces-virtual realities[J]. Nat Mater, 2003, 2(5):301-306.
[5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677.
[6] ABRAHAM M. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be[J]. Langmuir, 2006, 19(7):8343-8348.
[7] ZHENG Q S, YU Y, ZHAO Z H. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces[J]. Langmuir, 2005, 21(26):12207-12212.
[8] PATANKAR N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2007(19):1249-1253.
[9] YOUNG T. An essay on the cohesion of fluids[J].Philosoph Trans Royal Soc London, 1805, 95:65-87.
[10] NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323.
[11] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994.
[12] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551.
[13] LI W, FANG G, LI Y, et al. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure[J]. The Journal of Physical Chemistry B, 2008, 112(24):7234-7243.
[14] JOHNSON R E, DETTRE R H. Contact angle hysteresis. I. study of an idealized rough surface[J]. Advances in Chemistry, Series, 1964, 43:112-135.
[15] LI W, AMIRFAZLI A. A thermodynamic approach for determining the contact angle hysteresis for super-hydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2005, 292(1):195-201.
[16] EXTRAND C W. Criteria for ultralyophobic surfaces[J]. Langmuir, 2004, 20(12):5013-5018.
[17] LIU J L, FENG X Q, WANG G, et al. Mechanisms of super-hydrophobic on hydrophilic substrates[J]. Journal of Physics: Condensed Matter, 2007, 19(35):356002.
[18] OLIVER J F, HUH C, MASON S G. Resistance to spreading of liquids by sharp edges[J].Journal of Colloid and Interface Science, 1977, 59(3):568-581.
[19] FANG G, LI W, WANG X, et al. Droplet motion on designed micro textured super-hydrophobic surfaces with tunable wettability[J]. Langmuir, 2008, 24(20):11651-11660.
[20] 崔晓松. 基于热力学分析的超疏水表面几何优化设计[D]. 湘潭:湘潭大学, 2010. CUI X S.Optimal design of superhydrophobic geometrical surfaces based on thermodynamic analysis[D]. Xiangtan: Xiangtan University, 2010.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!