山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 56-61.doi: 10.6040/j.issn.1672-3961.0.2014.272
宋昊, 刘战强, 史振宇, 蔡玉奎
SONG Hao, LIU Zhanqiang, SHI Zhenyu, CAI Yukui
摘要: 在光滑表面Young氏方程和粗糙表面Cassie-Baxter模型的基础上,建立了二维情况下基于最小吉布斯自由能的接触角预测模型,并且对预测模型进行了修正,考虑斜壁对气-液接触线的影响。利用接触角预测模型及其修正研究微结构材料和尺寸参数对接触角大小的影响,从而指导疏水性微结构设计。研究结果表明,疏水性基底相对于亲水性基底加工出的微结构有更大的接触角提升趋势。增大微结构间隙宽度,减小凸台宽度,减小微结构斜壁角度,有利于接触角的提升。
中图分类号:
[1] DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929):4775-4806. [2] SUN T, WANG G, FENG L, et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43(3):357-360. [3] SUN T, TAN H, HAN D, et al. No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10):959-963. [4] BLOSSEY R. Self-cleaning surfaces-virtual realities[J]. Nat Mater, 2003, 2(5):301-306. [5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677. [6] ABRAHAM M. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be[J]. Langmuir, 2006, 19(7):8343-8348. [7] ZHENG Q S, YU Y, ZHAO Z H. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces[J]. Langmuir, 2005, 21(26):12207-12212. [8] PATANKAR N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2007(19):1249-1253. [9] YOUNG T. An essay on the cohesion of fluids[J].Philosoph Trans Royal Soc London, 1805, 95:65-87. [10] NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323. [11] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994. [12] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551. [13] LI W, FANG G, LI Y, et al. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure[J]. The Journal of Physical Chemistry B, 2008, 112(24):7234-7243. [14] JOHNSON R E, DETTRE R H. Contact angle hysteresis. I. study of an idealized rough surface[J]. Advances in Chemistry, Series, 1964, 43:112-135. [15] LI W, AMIRFAZLI A. A thermodynamic approach for determining the contact angle hysteresis for super-hydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2005, 292(1):195-201. [16] EXTRAND C W. Criteria for ultralyophobic surfaces[J]. Langmuir, 2004, 20(12):5013-5018. [17] LIU J L, FENG X Q, WANG G, et al. Mechanisms of super-hydrophobic on hydrophilic substrates[J]. Journal of Physics: Condensed Matter, 2007, 19(35):356002. [18] OLIVER J F, HUH C, MASON S G. Resistance to spreading of liquids by sharp edges[J].Journal of Colloid and Interface Science, 1977, 59(3):568-581. [19] FANG G, LI W, WANG X, et al. Droplet motion on designed micro textured super-hydrophobic surfaces with tunable wettability[J]. Langmuir, 2008, 24(20):11651-11660. [20] 崔晓松. 基于热力学分析的超疏水表面几何优化设计[D]. 湘潭:湘潭大学, 2010. CUI X S.Optimal design of superhydrophobic geometrical surfaces based on thermodynamic analysis[D]. Xiangtan: Xiangtan University, 2010. |
No related articles found! |
|