您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1-7.doi: 10.6040/j.issn.1672-3961.2.2014.306

• 机器学习与数据挖掘 •    下一篇

基于双模式变异策略的改进遗传算法

梁兴建1,2, 詹志辉3   

  1. 1. 四川理工学院计算机学院, 四川 自贡 643000;
    2. 企业信息化与物联网测控技术四川省高校重点实验室, 四川 自贡 643000;
    3. 中山大学计算机科学系, 广东 广州 510006
  • 收稿日期:2014-03-26 修回日期:2014-10-15 出版日期:2014-12-20 发布日期:2014-03-26
  • 作者简介:梁兴建(1979-),男,四川成都人,硕士,副教授,主要研究方向为计算智能及优化应用.E-mail:esunxingjian@163.com
  • 基金资助:
    四川省教育厅科研基金重点项目(13ZA0120);自贡市重点科技计划项目(2012D01);企业信息化与物联网测控技术四川省高校重点实验室基础项目(2013WYJ04)

Improved genetic algorithm based on the dual-mode mutation strategy

LIANG Xingjian1,2, ZHAN Zhihui3   

  1. 1. School of Computer Science, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China;
    2. Key Lab of Enterprise Informationization and Internet of Things of Sichuan Province, Zigong 643000, Sichuan, China;
    3. Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2014-03-26 Revised:2014-10-15 Online:2014-12-20 Published:2014-03-26

摘要: 针对基本遗传算法寻优速度慢且易陷入局部最优的缺陷,提出了一种基于双模式变异策略的改进遗传算法。在标准变异的基础上引入个体线性差分变异思想形成双变异模式,同时利用控制参数对两种变异模式加以平衡。通过10个基准测试函数仿真实验,结果表明本改进算法在寻优速度和全局收敛能力上都有较大的提高。

关键词: 差分演化, 优化变异, 遗传算法, 双模式变异策略, 算法改进

Abstract: Aiming at the defects in the standard genetic algorithm such as slow optimization speed and local optimum, an improved genetic algorithm based on the Dual-Mode Mutation strategy is put forward. On the basis of the standard mutation, the idea of individual linear difference mutation is introduced to form the Dual-Mode Mutation balanced by the controlling parameters. The results of simulation experiments on 10 benchmarking functions shows that this algorithm can greatly improve the optimization speed and global convergence and has application value.

Key words: algorithm improvement, dual-mode mutation strategy, differential evolution, genetic algorithm, mutation operator of optimization

中图分类号: 

  • TP18
[1] ZHANG J, CHUNG H S, LO W L. Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(3):326-335.
[2] 龚月姣,陈梦君,胡晓敏,等.遗传算法中自适应方法的比较和分析[J].计算机工程与设计,2009,30(21):4903-4913. GONG Yuejiao, CHEN Mengjun, HU Xiaomin, et al. Comparison and analysis of adaptive genetic algorithms[J]. Computer Engineering and Design, 2009, 30(21):4903-4913.
[3] 王晓峰,随婷婷.基于TIGA_S4VM改进算法的蛋白质序列识别方法[J]. 山东大学学报:工学版,2014,44(1):1-6. WANG Xiaofeng, SUI Tingting. Protein sequence identifycation based on improved TIGA_S4VM algorithm[J]. Journal of Shandong University: Engineer Science, 2014, 44(1):1-6.
[4] OUERFELLI H, DAMMAK A. The Genetic Algorithm with two point crossover to solve the Resource-Constrained Project Scheduling Problems[C]//International Conference on Modeling, Simulation and Applied Optimization. Hammamet, Tunisia: IEEE, 2013:1-4.
[5] GAO Y, ZHENG T. Improved genetic algorithms based on chaotic mutation operation and its application[C]//International Conference on Multimedia Technology, Ningbo,China: IEEE, 2010:1-3.
[6] ABIDO M A, ELAZOUNI A. Improved Crossover and Mutation Operators for Genetic Algorithm Project Scheduling[C]//IEEE Congress on Evolutionary Computation. Trondheim,Norway: IEEE, 2009:1865-1872.
[7] 何涛,张洪伟,邹书蓉. 特征提取与多目标机器学习研究及应用[J]. 四川理工学院学报:自然科学版,2013, 26(1): 33-37. HE Tao, ZHANG Hongwei, ZOU Shurong. Research and Application of Feature Extraction and Multi-objective Machine Learning[J]. Journal of Sichuan University of Science & Engineering:Natural Science Edition, 2013, 26(1): 33-37.
[8] RITTHIPAKDEE A, THAMMANO A, PREMASATHIAN N, et al. A New Selection Operator to Improve the Performance of Genetic Algorithm for Optimization Problems[C]//IEEE ICMA Conference International Scientific Advisory Board. Takamatsu, Japan:IEEE, 2013:371-375.
[9] 丁若冰,邹书蓉. 基于聚类划分子种群的多种群遗传算法[J].四川理工学院学报:自然科学版,2014,27(3):1-4. DING Ruobing, ZOU Shurong. Multiple Populations Genetic Algorithm Based on Clustering Dividing Child Populations[J]. Journal of Sichuan University of Science & Engineering:Natural Science Edition, 2014, 27(3):1-4.
[10] 张琛,詹志辉.遗传算法选择策略比较[J].计算机工程与设计,2009,30(23):5471-5478. ZHANG Chen, ZHAN Zhihui Comparisons of Selection Strategy in Genetic Algorithm[J]. Computer Engineering and Design, 2009, 30(23):5471-5478.
[11] ZHONG J H, HU X M, GU M, et al. Comparison of Performance between Different Selection Strategies on Simple Genetic Algorithms[C]//International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Vienna,Austria: IEEE, 2005:1115-1121.
[12] RAJAKUMAR B R, GEORGE A. A New Adaptive Muta-tion Technique for Genetic Algorithm[C]//IEEE Interna-tional Conference on Computational Intelligence and Computing Research. Coimbatore India: IEEE, 2012:1-7.
[13] 段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2011:108-114.
[1] 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87.
[2] 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94.
[3] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[4] 刘德宝, 吴耀华, 郭耀阳, 王艳艳. 基于串并行混合拣选策略的自动拣选系统品项分配优化[J]. 山东大学学报(工学版), 2015, 45(6): 36-44.
[5] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[6] 孙鹏,程世庆*,谢敬思,张海瑞. 预测混合生物质灰熔点的CV-GA-SVM模型[J]. 山东大学学报(工学版), 2012, 42(2): 108-111.
[7] 杨钦民,刘海林*. 基于遗传算法的蜂窝网络动态信道分配建模及算法实现[J]. 山东大学学报(工学版), 2011, 41(2): 85-90.
[8] 李国正1,史淼晶1,李福凤2,王忆勤2. 舌体图像分割技术的实验分析与改进[J]. 山东大学学报(工学版), 2010, 40(5): 87-95.
[9] 刘彬,张仁津. 基于退火遗传算法的NURBS曲线逼近[J]. 山东大学学报(工学版), 2010, 40(5): 96-100.
[10] 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1-7.
[11] 王艳艳,吴耀华,孙国华,于洪鹏. 配送中心分拣订单合批策略的研究[J]. 山东大学学报(工学版), 2010, 40(2): 43-46.
[12] 杜乾蔚 何彬 王玉玲 游智.
基于遗传算法的含金属混合炸药配方设计
[J]. 山东大学学报(工学版), 2009, 39(5): 149-152.
[13] 巩敦卫,孙晓燕,任洁.

基于联赛评价和知识提取的交互式遗传算法

[J]. 山东大学学报(工学版), 2009, 39(2): 1-7.
[14] 王剑 张善. 考虑不可行度的改进遗传算法在电压无功调整中的研究[J]. 山东大学学报(工学版), 2008, 38(6): 21-24.
[15] 李杰 刘弘. 基于遗传算法的分形艺术图案生成方法[J]. 山东大学学报(工学版), 2008, 38(6): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!