您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 64-69.doi: 10.6040/j.issn.1672-3961.0.2014.051

• 能源与动力工程 • 上一篇    下一篇

基于斯特林机的碟式太阳能热发电系统性能仿真分析

丁生平, 王永征, 吕瑞杰, 武岳, 姜磊   

  1. 山东大学能源与动力工程学院, 山东 济南 250061
  • 收稿日期:2014-02-22 修回日期:2014-06-26 发布日期:2014-02-22
  • 通讯作者: 王永征(1967-),男,山东潍坊人,副教授,博士,主要研究方向为燃烧污染物排放控制.E-mail:sddxwyz@sina.com E-mail:sddxwyz@sina.com
  • 作者简介:丁生平(1987-),男,宁夏同心人,硕士研究生,主要研究方向为燃烧污染物排放控制.E-mail:dmufid@163.com
  • 基金资助:
    山东大学自主创新基金资助项目(2012ZD019)

Simulation and analysis on performances of dish solar thermal power system based on Stirling engine

DING Shengping, WANG Yongzheng, LYU Ruijie, WU Yue, JIANG Lei   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-02-22 Revised:2014-06-26 Published:2014-02-22

摘要: 通过对聚光器、接收器和斯特林机等模块进行分析,得到了各模块之间的函数关系,建立了碟式太阳能热发电系统的能量传递模型,运用该模型对碟式太阳能热发电系统在不同气候条件下的性能进行了仿真分析。结果表明,斯特林机压力与太阳直接辐射强度呈线性增大关系;当斯特林机热头温度保持在设定值范围内时,系统净输出功率随斯特林机压力的增大而升高;当环境温度降低时,斯特林机效率和系统净输出功率均有所升高,但系统净输出功率升高幅度不大;当风速增大时,接收器效率及系统净输出功率均降低。

关键词: 斯特林机, 仿真, 太阳能热发电, 系统净输出功率, 直接辐射强度

Abstract: Through an analysis on concentrator, receiver and Stirling engine, the functional relationships among each modules were obtained, the energy tranfer model of dish solar thermal power system was built. The simulation and analysis on the performances of dish Stirling system were carried out under different climates conditions by using energy transfer model. The results showed that the engine pressure exhibited linear relationship with the solar direct normal insolation; when the hot-head temperature kept in setting range, the net output power of the system increased with the engine pressure increasing; while the ambient temperature decreased, the Stirling engine efficiency increased and the net output power increased slightly; while the wind speed increased, the receiver efficiency and the net output power increased.

Key words: solar thermal power, net output power, direct normal insolation, simulation, Stirling engine

中图分类号: 

  • TK51
[1] MANCINI T, HELLER P, BUTLER B, et al. Dish stirling systems: an overview of development and status[J]. Journal of Solar Energy Engineering, 2003, 125(2):135-151.
[2] KADIR A, ABIDIN M Z, RAFEEU Y, et al. Prospective scenarios for the full solar energy development in Malaysia[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9):3023-3031.
[3] NEPVEU F, FERRIERE A, BATAILLE F. Thermal model of a dish/stirling systems[J]. Solar Energy, 2009, 83(1):81-89.
[4] PAUL R F. Stirling dish system performance prediction model[D]. Madison:University of Wisconsin, 2008.
[5] ANDRAKA C E. Alignment strategy optimization method for dish stirling faceted concentrators[C]//Energy sustainability. Long Beach: ASME, 2007:1047-1054.
[6] SINGH N, GIBBS B M, KAUSHIK S C. Effect of solar collector design parameters on the operation of solar Stirling power system[J]. International Journal of Energy Research, 1997, 21(2):195-200.
[7] HARRIS J A, LENZ T G. Thermal performance of solar concentrator/cavity receiver systems[J]. Solar Energy, 1985, 34(2):135-142.
[8] HOGAN Jr R E.AEETES-A solar reflux receiver thermal performance numerical model[J]. Solar Energy, 1994, 52(2):167-178.
[9] STINE W B, MCDONALD C G. Cavity receiver heat loss measurements[C]//Solar World Congress. Kobe:ISES, 1989.
[10] MORAN M J, SHAPIRO H N, BOETTNER D D, et al. Fundamentals of engineering thermodynamics[M]. Hoboken:John Wiley & Sons, 2010.
[11] MARTIN W R. Stirling engine design manul[R]. Alexandria:NASA, 1983.
[12] URIELI I, BERCHOWITZ D M. Stirling cycle engine analysis[M]. Bristol:Adam Hilger, 1984.
[13] REINALTER W, GINESTE J M, FERRIERE A, et al. Detailed performance analysis of a 10 kW dish/stirling system[J]. Journal of Solar Energy Engineering, 2008, 130(1):11-13.
[14] 顾根香,金东寒.斯特林动态特性的研究[J].内燃机学报,2000,18(3):305-307. GU Genxiang, JIN Donghan. Study on the stirling engine dynamic characteristics[J]. Transactions of Csice, 2000, 18(3):305-307.
[15] 李明震,董金钟.碟式斯特林发电系统性能分析模型与仿真[J].北京航空航天大学学报,2013,39(3):381-385. LI Mingzhen, DONG Jinzhong.Dish-stirling power generation system performance prediction model and simulation analysis[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):381-385.
[16] IGO J, ANDRAKA C E. Solar dish field system model for spacing optimization[C]//Energy Sustainability. Long Beach: ASME, 2007:981-987.
[17] KONGTRAGOOL B, WONGWISES S.A review of solar powered stirling engines and low temperature differential stirling engines[J]. Renewable and Sustainable Energy Reviews, 2003, 7(2):131-154.
[1] 代时雨,刘淑琴. 状态观测器对磁悬浮平台速度与加速度的估算[J]. 山东大学学报(工学版), 2018, 48(2): 114-120.
[2] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[3] 邵健,魏佩瑜,陈平,梁凤强,孟超. 基于组合行波测距原理的T型线路测距方法[J]. 山东大学学报(工学版), 2018, 48(1): 117-123.
[4] 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156.
[5] 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110.
[6] 纪跃波,伍旺贤. 一种减小行波型旋转超声电动机径向滑移的方法[J]. 山东大学学报(工学版), 2016, 46(3): 112-116.
[7] 李超, 王增才, 张万枝, 黄显华, 朱述川, 孟怀. 深井提升尾绳动力学建模及摆动参数分析[J]. 山东大学学报(工学版), 2015, 45(6): 65-70.
[8] 张奇, 李珂, 刘旭东, 邢国靖, 孙静, 张承慧. 基于平衡点计算的感应电机端口受控哈密顿控制策略[J]. 山东大学学报(工学版), 2015, 45(1): 70-75.
[9] 刘洋,葛连升*. 基于新型Padé近似BPM算法的TE模式分析[J]. 山东大学学报(工学版), 2014, 44(1): 19-23.
[10] 张飞,耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43(3): 19-22.
[11] 仕小伟,朱文兴*,王青燕,邵士雨. 城市主干路交通溢流发生机理建模及其仿真[J]. 山东大学学报(工学版), 2013, 43(3): 43-48.
[12] 孙香花. 基于距离向量的改进WSN路由算法[J]. 山东大学学报(工学版), 2012, 42(6): 25-30.
[13] 唐宗华1, 2,谭震宇2,温惠2,孙树敏1. 故障限流装置中MOV能量吸收及热特性研究[J]. 山东大学学报(工学版), 2012, 42(5): 123-129.
[14] 潘多涛1, 黄明忠1, 张学军2, 袁德成1. 工业轻烃回收装置的全流程静态仿真模型[J]. 山东大学学报(工学版), 2012, 42(3): 57-62.
[15] 张琦琮1,杨公平2*. 基于Agent的银行业务排队系统仿真研究[J]. 山东大学学报(工学版), 2011, 41(4): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!