您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (2): 80-84.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于RSOM树的图像K近邻求解算法

郑君君1,夏胜平1,李新光1,祝一薇1,刘建军1,谭立球1,2   

  1. 1. 国防科技大学电子科学与工程学院ATR实验室, 湖南 长沙 410073;
    2. 中南大学现代教育中心网络工程研究所, 湖南 长沙 410075
  • 收稿日期:2010-11-04 出版日期:2011-04-16 发布日期:2010-11-04
  • 作者简介:郑君君(1987- ),男,湖南耒阳人,硕士研究生,主要研究方向为机器视觉与模式识别.Email:cn-zyj@163.com
  • 基金资助:

    国家自然科学基金资助项目(60972114)

K nearest neighbors detecting algorithm based on a RSOM tree

ZHENG Junjun1, XIA Shengping1, LI Xinguang1, ZHU Yiwei1, LIU Jianjun1,  TAN Liqiu1,2   

  1. 1. State Lab of Automatic Target Recognition, National University of Defense Technology, Changsha 410073, China;
    2. School of Information Science and Engineering, Central South University, Changsha 410075, China
  • Received:2010-11-04 Online:2011-04-16 Published:2010-11-04

摘要:

提出了一种基于RSOM(recursive selforganizing mapping, RSOM)树、利用SIFT (scale invariant feature transform)特征为索引的海量图像集中K近邻的求解方案。对图像编号并提取SIFT特征,依据SIFT特征将图像的编号存储至RSOM树的叶节点中;搜索时用匹配的SIFT特征个数作为指标获得K近邻图像的候选集,用迭代Procrustes方法几何约束得到精确求解结果。利用5万余幅图像数据进行实验测试,结果证实了该方法的有效性。

关键词: 图像内容检索;RSOM;K最近邻;聚类树, SIFT;快速算法;局部不变特征

Abstract:

A K nearest neighbors detecting algorithm based on a RSOM(recursive selforganizing mapping) clustering tree was proposed by using the scale invariant feature transform(SIFT)  feature as the indices. Images were labeled and SIFT features were extracted and the number of the images were stored in the leaf node of the RSOM clustering tree. Using matched feature number as the criterion of the candidate set of K nearestneighbors set, the iterative Procrustes method was employed to obtain  more precise results. More than 50 000 images were tested and the experimental results showed the high efficiency of the proposal method.

Key words: fast algorithm, local invariant feature, content based image retrieval, recursive selforganizing mapping(RSOM), K nearest neighbonr, clustering tree, scale invariant featur tronsform(SIFT)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!