您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 82-86.

• 论文 • 上一篇    下一篇

基于免疫网络的无监督式分类算法

梁春林1,彭凌西2*   

  1. 1. 广东海洋大学信息学院, 广东 湛江 524088; 2.  广州大学计算机学院, 广东 广州 510006
  • 收稿日期:2010-04-23 出版日期:2010-10-16 发布日期:2010-04-23
  • 通讯作者: 彭凌西(1978-),男,湖南岳阳人,副教授,博士,主要研究方向为网络安全. E-mail:E-mail:scu.peng@gmail.com
  • 作者简介:梁春林(1975-),男,广东湛江人,讲师,硕士,主要研究方向为人工智能.E-mail:yes2384735@126.com

An immune network based unsupervised classifier

LIANG Chun-lin1, PENG Ling-xi2*   

  1. 1. School of Information, Guangdong Ocean University, Zhanjiang 524088, China;
    2. School of Computer Science, Guangzhou University, Guangzhou 510006, China
  • Received:2010-04-23 Online:2010-10-16 Published:2010-04-23

摘要:

基于免疫网络原理,提出了一种新的无监督式分类算法。首先基于形态空间理论给出了抗体、抗原和免疫网络的形式化定义,建立了抗体克隆选择、高频变异以及免疫记忆的动态模型和相应的数学方程,最后给出了分类过程。实验表明该算法的分类精度要高于其它传统的聚类算法,并具有很好的持续学习、动态调节、特性记忆等特性。如果把抗体视为某种既定模式,合理地调整抗原集合,则该模型具有广泛的用途。

关键词: 无监督式分类, 免疫网络, 机器学习

Abstract:

A novel unsupervised classification algorithm based immune network was presented. First of all, the formal definitions of antibodies, antigens and immune network were given according to shape space theory, respectively. Afterward, the mathematical models and corresponding equations were established, such that the clonal selection and highfrequency mutation of antibodies, the immunological memory, and etc. Finally, the process of unsupervised classification was presented. The experimental results showed that the algorithm achieves the higher classification accuracy than other traditional clustering algorithms, and has some better characters such that continuous learning, dynamic adjustment, features remembering, and etc. If the antibody is regarded as a given model, and rationalizes the antigens collection, then the model has a wide range of applications.

Key words: unsupervised classification, immune network, machine learning

[1] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报(工学版), 2018, 48(5): 103-108.
[2] 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6.
[3] 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27.
[4] 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44.
[5] 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43.
[6] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[7] 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25.
[8] 谢琳1,殷熙尧2,李凡长3,吴佳3. 一种逆归结学习表示[J]. 山东大学学报(工学版), 2013, 43(4): 46-50.
[9] 何雪英1,2, 秦伟1, 尹义龙1*, 赵联征1,乔昊3. 基于机器学习的视频指纹识别[J]. 山东大学学报(工学版), 2011, 41(4): 29-33.
[10] 郭茂祖 邹权 李文滨 韩英鹏. 生物信息学中的学习问题[J]. 山东大学学报(工学版), 2009, 39(3): 1-6.
[11] 吴 皓,田国会,黄 彬 . 未知环境探测的多机器人协作策略研究[J]. 山东大学学报(工学版), 2008, 38(4): 27-31 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!