您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 60-65.

• 论文 • 上一篇    下一篇

一种基于SVM的快速特征选择方法

戴平,李宁*   

  1. 南京大学计算机软件新技术国家重点实验室, 南京 210093
  • 收稿日期:2010-04-02 出版日期:2010-10-16 发布日期:2010-04-02
  • 通讯作者: 李宁(1968-),女,江苏沭阳人,副教授,硕士,主要研究方向为机器学习与图像处理. E-mail:E-mail:ln@nju.edu.cn
  • 作者简介:戴平(1986-),男,上海人,硕士研究生,主要研究方向为机器学习. E-mail:dp0130@163.com
  • 基金资助:

    国家自然科学基金资助项目(60875011)

A fast SVM-based feature selection method

DAI Ping, LI Ning*   

  1. National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
  • Received:2010-04-02 Online:2010-10-16 Published:2010-04-02

摘要:

针对现有特征选择方法计算量大、速度慢的缺点,提出了一种基于SVM的快速特征选择算法。该算法使用SVM作为分类器,并利用粒子群优化算法进行搜索。通过利用SVM线性核与多项式核函数的特性,减少了在特征选择中训练分类器的次数,降低了计算复杂度。实验结果表明在不损失分类精度的情况下,能显著提高特征选择的速度。

关键词: 特征选择, SVM, 粒子群优化

Abstract:

Aiming at the large computation and slow convergence speed of the traditional feature selection methods, a fast SVMbased feature selection method is proposed to overcome.Support vecor machine is employed as the classifier and particle swarm optimization method is employed as searching strategy.The proposed method reduces the iterations of training classifiers by taking advantage of the characteristics of linear and polynomial kernel functions so that it reduces the complexity of calculation. Experimental results show that the method accelerates feature selection in the case of no loss of classification performances.

Key words:  feature selection, support vector machine, particle swarm optimization

[1] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37.
[2] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[3] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[4] 方昊,李云. 基于多次随机欠采样和POSS方法的软件缺陷检测[J]. 山东大学学报(工学版), 2017, 47(1): 15-21.
[5] 张玉玲,尹传环. 基于SVM的安卓恶意软件检测[J]. 山东大学学报(工学版), 2017, 47(1): 42-47.
[6] 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27.
[7] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[8] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15-18.
[9] 花景新, 薄煜明, 陈志敏. 基于改进粒子群优化神经网络的房地产市场预测[J]. 山东大学学报(工学版), 2014, 44(4): 22-30.
[10] 魏小敏,徐彬,关佶红. 基于递归特征消除法的蛋白质能量热点预测[J]. 山东大学学报(工学版), 2014, 44(2): 12-20.
[11] 李富贵1,2,黄添强1,2*,苏立超1,2,苏伟峰3. 融合多特征的异源视频复制-粘贴篡改检测[J]. 山东大学学报(工学版), 2013, 43(4): 32-38.
[12] 严云洋1,2,唐岩岩2,刘以安2,张天翼3. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报(工学版), 2012, 42(5): 47-52.
[13] 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86.
[14] 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29.
[15] 刘彬,张仁津. 一种采用两段粒子群优化的路径规划方法[J]. 山东大学学报(工学版), 2012, 42(1): 12-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!