您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (6): 13-23.

• 机器学习与数据挖掘 • 上一篇    下一篇

异常检测综述

陈斌 陈松灿 潘志松 李斌   

  1. 陈斌 陈松灿: 南京航空航天大学信息科学与技术学院, 江苏 南京 210016; 陈斌 李斌:扬州大学信息工程学院, 江苏 扬州 225009;
    潘志松:解放军理工大学指挥自动化学院, 江苏 南京 210007
  • 收稿日期:2009-07-16 出版日期:2009-12-16 发布日期:2009-12-16
  • 通讯作者: 陈松灿(1962-),男,浙江宁波人,博士生导师,教授,研究方向为人工智能、神经网络和模式识别. E-mail: s.chen@nuaa.edu.cn
  • 作者简介:陈斌(1974-),男,江苏泰州人,讲师,博士研究生,研究方向为模式识别和数据分析. E-mail:chb@yzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(60903130,60603029);江苏省自然科学基金项目(BK2007074)

Survey of outlier detection technologies

  1.  CHEN Bin, CHEN Song-Can: Institute of Information Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016,China; 
     CHEN Bin, LI Bin:College of Information Engineering, Yangzhou University, Yangzhou 225009, China;
     PAN Zhi-Song:Institute of Command Automation, PLA University of Science Technology, Nanjing 210007, China
  • Received:2009-07-16 Online:2009-12-16 Published:2009-12-16

摘要:

异常检测旨在检测出不符合期望行为的数据,因而适合应用于故障诊断、入侵和欺诈检测以及数据预处理等多个领域.针对目前众多的专用和通用异常检测方法,本文侧重对基于统计的主流异常检测方法进行了回顾,力图提供一个新的结构化的异常检测方法的认识框架,并依据其监督和无监督学习算法的原理进行了简单分类,特别对部分异常检测方法间的等价性进行了深入探讨.

关键词: 异常检测;统计;监督学习;无监督学习

Abstract:

Outlier detection aims to detect those data that significantly deviate from the expected behavior, and thus is widely applied in many fields, such as, machine fault detection, intrusion detection, fraud detection and data preprocessing. Hence, there exist many generic and special algorithms for outlier detection under the unsupervised and supervised learning framework. But up to now, there still has been no clear classification in this aspect. To provide a structural view, the review of the state-of-the-art statistics-based methods for outlier detection was focusedon, and a simple classification was given in this aspect. Moreover,the equivalence between some outlier detectors in depth is particularly discussed.

Key words: outlier detection; statistics; supervised learning; unsupervised learning

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!