您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (1): 22-26.doi:

• 机器学习与数据挖掘 • 上一篇    下一篇

基于协同训练的指纹图像分割算法

周广通,尹义龙,郭文鹃,任春晓   

  1. 山东大学计算机科学与技术学院, 山东 济南 250101
  • 收稿日期:2009-01-19 修回日期:1900-01-01 出版日期:2009-02-16 发布日期:2009-02-16
  • 通讯作者: 尹义龙

Fingerprint segmentation algorithm based on cotraining

ZHOU Guang tong, YIN Yi long, GUO Wen juan, REN Chuan xiao   

  1. School of Computer Science and Technology, Shandong University, Jinan 250101, China
  • Received:2009-01-19 Revised:1900-01-01 Online:2009-02-16 Published:2009-02-16
  • Contact: YIN Yi long

摘要:

摘要:指纹图像分割是自动指纹识别系统预处理中最关键的技术之一.精确、可靠地将指纹图像从背景中分割出来,能够加快后续工作的处理速度,提高识别算法的准确性.传统的分割算法需要大量已标记的指纹图像作为训练数据,但实际应用中获取标记样本比较繁琐和耗时.为综合利用已标记和未标记的指纹图像,提出一种基于协同训练的半监督指纹图像分割算法:CoSeg.该算法在基于像素水平的Coherence、Mean、Variace(CMV)特征体系下,使用标记盒和支持向量机作为基分类器进行协同训练.在FVC2002指纹库上的实验结果表明,CoSeg能够在标记信息较少的情况下取得较好的性能,并在处理低质量指纹图像时表现出较强的鲁棒性.

关键词: 关键词:指纹识别;指纹图像分割;半监督学习;协同训练;CoSeg

Abstract:

Abstract: Fingerprint segmentation is one of the key preprocessing steps in an automated fingerprint identification

system (AFIS). Effective segmentation of the fingerprint from the background could speed up following processes and improve

recognition accuracy. However, in traditional segmentation algorithms, it is essential to obtain lots of labeled fingerprints,

which are usually more expensive than unlabeled ones. To incorporate labeled and unlabeled data together, this paper proposed

CoSeg, a semisupervised fingerprint segmentation algorithm. Under the view of pixellevel features, i.e. Coherence, Mean and

Variance (CMV), CoSeg employs Label Box and SVM as two base learners and trains the final model for segmentation based on a co

training style algorithm. Experiments performed on FVC 2002 databases show that CoSeg can effectively exploit unlabeled data

with limited labeled data, and the proposed method is also robust when dealing with lowquality fingerprints.

Key words: Key words: fingerprint recognition; fingerprint segmentation; semisupervised learning; cotraining; cotraining based  

中图分类号: 

  • TP391
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!