您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (1): 27-32.doi:

• 机器学习与数据挖掘 • 上一篇    下一篇

超分辨率算法研究综述

浦剑1,张军平1,黄华2   

  1. 1. 复旦大学计算机科学技术学院, 上海 200433; 2. 西安交通大学电信学院, 陕西 西安 710049
  • 收稿日期:2009-01-11 修回日期:1900-01-01 出版日期:2009-02-16 发布日期:2009-02-16
  • 通讯作者: 张军平

  1. 1. School of Computer Science, Fudan University, Shanghai 200433, China;
    2. School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • Received:2009-01-11 Revised:1900-01-01 Online:2009-02-16 Published:2009-02-16
  • Contact: Zhang Junping

摘要:

摘要:图像超分辨率是指利用一幅或多幅低分辨率图像,运用相应的算法来获得一幅清晰的高分辨率图像.然而,传统的基于插值和重建的方法已很难获得进一步的突破.近年来出现的基于学习的方法为超分辨率的发展重新注入了活力.通过回顾插值、重建和学习这3个层面的超分辨率算法,分析了超分辨率技术的以往研究和最新进展,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望.

关键词: 关键词:图像处理;超分辨率;邻域嵌入;图像重建

Abstract:

Abstract: The goal of super resolution is to get high resolution images from at least one low resolution image. However,

with the traditional (interpolationbased and reconstructionbased) methods it is difficult to make further important

progress. The emerging learningbased superresolution methods breathe new life into the research. By reviewing these three

kinds of methods, the history of super resolution was surveyed, the limitation of existing methods was discussed and the

roadmap was analyzed for future developments.

Key words: Key words: image processing; super resolution; neighbor embedding; image reconstruction

中图分类号: 

  • TP7511
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!