山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 84-89.doi: 10.6040/j.issn.1672-3961.9.2014.001
张玉芬1, 侯志涛2, 任皞1, 赵帅1, 王成1
ZHANG Yufen1, HOU Zhitao2, REN Hao1, ZHAO Shuai1, WANG Cheng1
摘要: 基于DFT+U第一性原理计算,预测了过渡金属锰(Mn)掺杂立方氧化锆(c-ZrO2)体系的电子和光学性质。当c-ZrO2中的Zr原子被Mn原子取代后,体系的电子态密度图表明体系的带隙减小,同时价带顶的电子密度明显增加使得价带展宽约5%。在自旋向上通道中,费米面附近的电子密度源于Mn 3d电子与O 2p电子的强烈混合,使得掺杂体系具有半金属铁磁性能,这也可能是引起体系带隙减小的原因。本研究还表明,通过Mn掺杂,体系折射率明显增加,在约为2.8 eV 低能区域形成新的坡度陡峭的光吸收峰,这一发现使Mn掺杂c-ZrO2用作光吸收材料成为可能。通过Zener双交换机制解释了体系的铁磁性能,该理论也曾用于解释其他化合物;同时也探讨了体系的电子结构和光学性质之间的联系。
中图分类号:
[1] KENDALL K, WILLIAMS D S. Catalysts for butane reforming in zirconia fuel cells[J].Platinum Metals Rev, 1998, 42(4):164-167. [2] UTT K, LANGE S, JRVEKLG M, et al. Structure and optical properties of Sm-doped ZrO2 microrolls[J]. Optical Materials, 2010, 32(8):823826. [3] HOWARD C J, HILL R J, REICHERT B E. Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction[J]. Acta Cryst, 1988, B44:116-120. [4] TEUFER G. The crystal structure of tetragonal ZrO2[J]. Acta Cryst, 1962, 15:1187. [5] STEFANIC G, MUSIC S, GAJOVIC A. A comparative study of the influence of milling media on the structural and microstructural changes in monoclinic ZrO2[J]. J Eur Ceram Soc, 2007, 27(2):1001-1016. [6] KHAN M S, ISLAM M S, BATES D R. Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study[J]. J Mater Chem, 1998, 8 (10): 2299-2307. [7] XIA X, OLDMAN R J, CATLOW C R A. Oxygen adsorption and dissociation on yttria stabilized zirconia surfaces[J]. J Mater Chem, 2012, 22(17):8594-8612. [8] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24(1):1-10. [9] CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale[J]. Progr Nucl Energy, 2001, 38(3-4):221-230. [10] PEACOCK P W, ROBERTSON J. Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces[J]. Phys Rev Lett, 2004, 92(5):057601. [11] JIA X, YANG W, QIN M, et al. Structure and magnetism in Mn-doped zirconia: density-functional theory studies[J]. J Magn Magn Mater, 2009, 321(15):2354-2358. [12] OSTANIN S, ERNST A, SANDRATSKII L M, et al. Mn-stabilized zirconia: from imitation diamonds to a new potential high-Tc ferromagnetic spintronics material[J]. Phys Rev Lett, 2007, 98(1):016101. [13] ARCHER T, PEMMARAJU C DAS, SANVITO S. Magnetic properties of ZrO2 diluted magnetic semiconductors[J]. J Magn Magn Mater, 2007, 316:e188. [14] JOHNSON M. Spintronics[J]. J Phys Chem B, 2005, 109(30):14278-14291. [15] ZUTIC I, FABIAN J, SARMA S DAS. Spintronics: fundamentals and applications[J]. Rev Mod Phys, 2004, 76(2):323-410. [16] TAGUCHI A, INOUE S, AKAMARU S, et al.Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J]. J Alloys Compd, 2006, 414 (1-2):137-141. [17] SINGHAL R K, DHAWAN M S, GAUR S K, et al.Room temperature ferromagnetism in Mn-doped dilute ZnO semiconductor: an electronic structure study using X-ray photoemission[J]. J Alloys Compd, 2009, 477 (1-2):379-385. [18] PATEL S K S, GAJBHIYE N S, DATE S K. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method[J]. J Alloys Compd, 2011, 509(S):427-430. [19] YANG Y L, FAN X L, LIU C, et al. First principles study of structural and electronic properties of cubic phase of ZrO2 and HfO2[J]. Physica B, 2014, 434(1):7-13. [20] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140: A1133. [21] PAYNE M C, TETER M P, ALLAN D C, et al.Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4):1045-1097. [22] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11):7892-7895. [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. [24] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192. [25] POLAK E. Computational Methods in Optimization[M]. New York: Academic, 1971. [26] LIU Q J, LIU Z T, FENG L P, et al. First-principles study of structural, optical and elastic properties of cubic HfO2[J]. Physica B, 2009, 404(20):3614-3619. [27] FABRIS S, VICARIO G, BALDUCCI G, et al. Electronic and atomistic structures of clean and reduced ceria surfaces[J]. J Phys Chem B, 2005, 109(48):22860-22867. [28] ZHANG Y, JI V, XU K W. The detailed geometrical and electronic structures of monoclinic zirconia[J]. Journal of Physics and Chemistry of Solids, 2013, 74(3):518-523. [29] CEN W, LIU Y, WU Z, et al. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping[J]. Phys Chem Chem Phys, 2012, 14(16):5769-5777. [30] IGAWA N, ISHII Y, NAGASAKI T, et al. Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study[J]. J Am Ceram Soc, 1993, 76(10):2673-2676. [31] SAINI H S, SINGH M, RESHAK A H, et al.Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit[J]. J Alloys Compd, 2012, 536(1-2):214-218. [32] SATO K, BERGQVIST L, KUDRNOVSKY J, et al.First-principles theory of dilute magnetic semiconductors[J]. Rev Mod Phys, 2010, 82(2):1633. [33] MO S D, OUYANG L, CHING W Y, et al. Interesting physical properties of the new spinel phase of Si3N4 and C3N4[J]. Phys Rev Lett, 1999, 83(24):5046-5049. |
[1] | 李金云1,马海霞2*,黄洁2,王花丽2,宋纪蓉2. 硫脲类三唑衍生物结构与活性的密度泛函理论研究[J]. 山东大学学报(工学版), 2012, 42(3): 120-125. |
[2] | 于元勋1,连洁2*,官文栎1,王公堂3,李娟4,徐现刚4. 碳化硅晶体的可见近红外透射光谱分析[J]. 山东大学学报(工学版), 2011, 41(2): 126-129. |
|