您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 84-89.doi: 10.6040/j.issn.1672-3961.9.2014.001

• 能源与动力工程 • 上一篇    下一篇

Mn掺杂c-ZrO2电子和光学性质的第一性原理研究

张玉芬1, 侯志涛2, 任皞1, 赵帅1, 王成1   

  1. 1. 济南大学化学化工学院, 山东 济南 250022;
    2. 山东大学合作发展部, 山东 济南 250100
  • 收稿日期:2014-03-25 修回日期:2014-06-26 发布日期:2014-03-25
  • 作者简介:张玉芬(1972-),女,山东荣成人,讲师,博士,主要研究方向为材料化学.E-mail:zhangyufen_zyf0924@163.com
  • 基金资助:
    国家自然科学基金资助项目(51074078);山东省自然科学基金资助项目(ZR2010BM028);济南大学博士基金资助项目(XBS0922)

First-principles study of electronic and optical properties of Mn-doped cubic ZrO2

ZHANG Yufen1, HOU Zhitao2, REN Hao1, ZHAO Shuai1, WANG Cheng1   

  1. 1. School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China;
    2. Cooperation Development Department, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-03-25 Revised:2014-06-26 Published:2014-03-25

摘要: 基于DFT+U第一性原理计算,预测了过渡金属锰(Mn)掺杂立方氧化锆(c-ZrO2)体系的电子和光学性质。当c-ZrO2中的Zr原子被Mn原子取代后,体系的电子态密度图表明体系的带隙减小,同时价带顶的电子密度明显增加使得价带展宽约5%。在自旋向上通道中,费米面附近的电子密度源于Mn 3d电子与O 2p电子的强烈混合,使得掺杂体系具有半金属铁磁性能,这也可能是引起体系带隙减小的原因。本研究还表明,通过Mn掺杂,体系折射率明显增加,在约为2.8 eV 低能区域形成新的坡度陡峭的光吸收峰,这一发现使Mn掺杂c-ZrO2用作光吸收材料成为可能。通过Zener双交换机制解释了体系的铁磁性能,该理论也曾用于解释其他化合物;同时也探讨了体系的电子结构和光学性质之间的联系。

关键词: 电子性质, 光学性质, 密度泛函理论, 铁磁性, c-ZrO2, Mn掺杂

Abstract: First-principles calculations based on DFT+U were performed on electronic and optical properties of Mn-doped cubic ZrO2. When Zr was replaced by Mn in cubic ZrO2, the density of states spectra showed that a band gap reduction was observed and an obvious increase at the top of valence band could make the width of valence band broader by about ~5%. In the majority spin, the states near the Fermi level were attributed to Mn 3 d states with a strong admixture of O 2p states, which resulted in a half-metallic ferromagnetism behavior of the system and may be the reason to cause the band gap reduction. By Mn doping, it found that there was an obvious increase of refractive index, and there was also a new steep absorption peak at lower energy region around 2.8 eV, which could be used for photo absorption applications. The ferromagnetism in Mn-doped system was explained by Zener's double exchange mechanism for ferromagnetism as in other compounds, and the probable relations between electronic structure and optical properties were also found out.

Key words: DFT, electronic property, optical property, Mn doping, cubic ZrO2, ferromagnetism

中图分类号: 

  • O48
[1] KENDALL K, WILLIAMS D S. Catalysts for butane reforming in zirconia fuel cells[J].Platinum Metals Rev, 1998, 42(4):164-167.
[2] UTT K, LANGE S, JRVEKLG M, et al. Structure and optical properties of Sm-doped ZrO2 microrolls[J]. Optical Materials, 2010, 32(8):823826.
[3] HOWARD C J, HILL R J, REICHERT B E. Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction[J]. Acta Cryst, 1988, B44:116-120.
[4] TEUFER G. The crystal structure of tetragonal ZrO2[J]. Acta Cryst, 1962, 15:1187.
[5] STEFANIC G, MUSIC S, GAJOVIC A. A comparative study of the influence of milling media on the structural and microstructural changes in monoclinic ZrO2[J]. J Eur Ceram Soc, 2007, 27(2):1001-1016.
[6] KHAN M S, ISLAM M S, BATES D R. Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study[J]. J Mater Chem, 1998, 8 (10): 2299-2307.
[7] XIA X, OLDMAN R J, CATLOW C R A. Oxygen adsorption and dissociation on yttria stabilized zirconia surfaces[J]. J Mater Chem, 2012, 22(17):8594-8612.
[8] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24(1):1-10.
[9] CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale[J]. Progr Nucl Energy, 2001, 38(3-4):221-230.
[10] PEACOCK P W, ROBERTSON J. Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces[J]. Phys Rev Lett, 2004, 92(5):057601.
[11] JIA X, YANG W, QIN M, et al. Structure and magnetism in Mn-doped zirconia: density-functional theory studies[J]. J Magn Magn Mater, 2009, 321(15):2354-2358.
[12] OSTANIN S, ERNST A, SANDRATSKII L M, et al. Mn-stabilized zirconia: from imitation diamonds to a new potential high-Tc ferromagnetic spintronics material[J]. Phys Rev Lett, 2007, 98(1):016101.
[13] ARCHER T, PEMMARAJU C DAS, SANVITO S. Magnetic properties of ZrO2 diluted magnetic semiconductors[J]. J Magn Magn Mater, 2007, 316:e188.
[14] JOHNSON M. Spintronics[J]. J Phys Chem B, 2005, 109(30):14278-14291.
[15] ZUTIC I, FABIAN J, SARMA S DAS. Spintronics: fundamentals and applications[J]. Rev Mod Phys, 2004, 76(2):323-410.
[16] TAGUCHI A, INOUE S, AKAMARU S, et al.Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J]. J Alloys Compd, 2006, 414 (1-2):137-141.
[17] SINGHAL R K, DHAWAN M S, GAUR S K, et al.Room temperature ferromagnetism in Mn-doped dilute ZnO semiconductor: an electronic structure study using X-ray photoemission[J]. J Alloys Compd, 2009, 477 (1-2):379-385.
[18] PATEL S K S, GAJBHIYE N S, DATE S K. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method[J]. J Alloys Compd, 2011, 509(S):427-430.
[19] YANG Y L, FAN X L, LIU C, et al. First principles study of structural and electronic properties of cubic phase of ZrO2 and HfO2[J]. Physica B, 2014, 434(1):7-13.
[20] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140: A1133.
[21] PAYNE M C, TETER M P, ALLAN D C, et al.Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4):1045-1097.
[22] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11):7892-7895.
[23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.
[24] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192.
[25] POLAK E. Computational Methods in Optimization[M]. New York: Academic, 1971.
[26] LIU Q J, LIU Z T, FENG L P, et al. First-principles study of structural, optical and elastic properties of cubic HfO2[J]. Physica B, 2009, 404(20):3614-3619.
[27] FABRIS S, VICARIO G, BALDUCCI G, et al. Electronic and atomistic structures of clean and reduced ceria surfaces[J]. J Phys Chem B, 2005, 109(48):22860-22867.
[28] ZHANG Y, JI V, XU K W. The detailed geometrical and electronic structures of monoclinic zirconia[J]. Journal of Physics and Chemistry of Solids, 2013, 74(3):518-523.
[29] CEN W, LIU Y, WU Z, et al. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping[J]. Phys Chem Chem Phys, 2012, 14(16):5769-5777.
[30] IGAWA N, ISHII Y, NAGASAKI T, et al. Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study[J]. J Am Ceram Soc, 1993, 76(10):2673-2676.
[31] SAINI H S, SINGH M, RESHAK A H, et al.Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit[J]. J Alloys Compd, 2012, 536(1-2):214-218.
[32] SATO K, BERGQVIST L, KUDRNOVSKY J, et al.First-principles theory of dilute magnetic semiconductors[J]. Rev Mod Phys, 2010, 82(2):1633.
[33] MO S D, OUYANG L, CHING W Y, et al. Interesting physical properties of the new spinel phase of Si3N4 and C3N4[J]. Phys Rev Lett, 1999, 83(24):5046-5049.
[1] 李金云1,马海霞2*,黄洁2,王花丽2,宋纪蓉2. 硫脲类三唑衍生物结构与活性的密度泛函理论研究[J]. 山东大学学报(工学版), 2012, 42(3): 120-125.
[2] 于元勋1,连洁2*,官文栎1,王公堂3,李娟4,徐现刚4. 碳化硅晶体的可见近红外透射光谱分析[J]. 山东大学学报(工学版), 2011, 41(2): 126-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!