您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 76-83.doi: 10.6040/j.issn.1672-3961.0.2014.006

• 能源与动力工程 • 上一篇    下一篇

太阳能真空管的热性能分析与测试

张涛1, 韩吉田1, 闫素英2, 于泽庭1, 周然1   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061;
    2. 内蒙古工业大学能源与动力工程学院, 内蒙古 呼和浩特 010051
  • 收稿日期:2014-01-06 修回日期:2014-05-08 发布日期:2014-01-06
  • 通讯作者: 韩吉田(1961-),男,山东莱阳人,教授,博士后,主要研究方向为多相流及强化传热技术.E-mail:jthan@sdu.edu.cn E-mail:jthan@sdu.edu.cn
  • 作者简介:张涛(1974-),男,山东泰安人,工程师,博士研究生,主要研究方向为太阳能热利用及强化传热技术.E-mail:760662923@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51376110);教育部博士点基金资助项目(2013013110006)

The analysis and testing of thermal performance on solar evacuated tube

ZHANG Tao1, HAN Jitian1, YAN Suying2, YU Zeting1, ZHOU Ran1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia Municipality, China
  • Received:2014-01-06 Revised:2014-05-08 Published:2014-01-06

摘要: 以太阳能Kalina循环为研究背景,搭建太阳能光热光伏联合应用实验平台;借助单管太阳能热水器,通过实验和数值模拟的方法,对太阳能真空管热性能进行分析与测试;利用场协同原理,对单管太阳能热水器温度场和速度场进行可视化分析。研究表明:建立的二维数值计算模型,能准确反映同一条件下,全玻璃真空管太阳能热水器的变化趋势;真空管内加装导流板后,场协同性最高;最终确定加装反光板和导流板的Φ58 mm×1 800 mm太阳能真空管为最佳选择。

关键词: 强化传热, 场协同原理, 试验研究, 数值模拟, 太阳能Kalina循环, 单管太阳能热水器

Abstract: The joint application test bench for solar-thermal photovoltaic was set up to study solar Kalina cycle. The analysis and testing of thermal performance on solar evacuated tube was carried out with methods of experimental and numerical simulation through the experiment platform of single tube solar water heater. The temperature and velocity field of single tube solar water heater were visible analyzed with field synergy principle. The study showed that the two dimensional numerical calculation model could accurately reflect the trend of all-glass evacuated tube solar water heater in the same conditions and the coefficient of field synergy on evacuated tube which was equipped with guide plate was superior to other structures. It was finally confirmed that the Φ58 mm×1 800 mm of solar evacuated tube equipped with reflector and guide plate was the best choice.

Key words: solar Kalina cycle, the single tube solar water heater, strengthen heat transfer, field synergy principle, experimental study, numerical simulation

中图分类号: 

  • TK515
[1] LOIOS P A, ROGDAKIS E D. A kalina power cycle driven by renewable energy sources[J]. Energy, 2009, 34:457-464.
[2] GANESH N S, SRINIVAS T. Design and modeling of low temperature solar thermal power station[J]. Applied Energy, 2012, 91:180-186.
[3] 路岭,严晋跃,马一太,等. Kalina循环放热过程的热力学分析[J].工程热物理学报,1989,10(3):249-251. LU Ling, YAN Jinyue, MA Yitai, et al. Thermodynamic analysis of heat-releasing process of Kalina cycle[J]. Journal of Engineering Thermophysics, 1989, 10(3):249-251.
[4] 吕灿仁,严晋跃,马一太. Kalina循环的研究和开发及其提高效率的分析[J].热能动力工程,1991,6(1):1-7. LV Canren, YAN Jinyue, MA Yitai. The research and development of kalina cycle and an analysis of its efficiency enhancement potentiality[J]. Journal of Engineering for Thermal Energy and Power, 1991, 6(1):1-7.
[5] MORRISON G L, BUDIHARDJO I, BEHNIA M. Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater[J]. Solar Energy, 2005, 78:257-267.
[6] ROSENGARTEN G, MORRISON G L, BEHNIA M. Mixed convection in a narrow rectangular cavity with bottom inlet and outlet[J]. International Journal of Heat and Fluid Flow, 2001, 22:168-179.
[7] BUDIHARDJO I, MORRISON G L, BEHNIA M. Natural circulation flow through water-in-glass evacuated tube solar collectors[J]. Solar Energy, 2007, 81:1460-1472.
[8] BUDIHARDJO I, MORRISON G L. Performance of water-in-glass evacuated tube solar water heaters[J]. Solar Energy, 2009, 83:49-56.
[9] FAN Jianhua, SHAH L J, FURBO S. Flow distribution in a solar collector panel with horizontally inclined absorber strips[J]. Solar Energy, 2007, 81:1501-1511.
[10] SHAH L J, FURBO S. Entrance effects in solar storage tanks[J]. Solar Energy, 2003, 75:337-348.
[11] SHAH L J, ANDERSEN E, FURBO S. Theoretical and experimental investigation of inlet stratifiers for solar storage tanks[J]. Applied Thermal Engineering, 2005, 25:2086-2099.
[12] 何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社,2009:1-583.
[13] 何梓年,朱郭志.太阳能供热采暖应用技术手册[M].北京:化学工业出版社,2009:1-302.
[14] 郑瑞澄.民用建筑太阳能热水系统工程技术手册[M].北京:化学工业出版社,2005:1-326.
[15] 刘鉴民.太阳能热动力发电技术[M].北京:化学工业出版社,2012:1-266.
[16] 王志峰,SUN Hongwei.全玻璃真空管空气集热器管内流动与换热的数值模拟[J].太阳能学报,2001,22(1):35-39. WANG Zhifeng, SUN Hongwei. A numerical simulation on heat transfer and fluid flow in a glass tube of all-glass evacuated tubular solar air heater[J]. Acta Energiae Solaris Sinica, 2001, 22(1):35-39.
[17] 王志峰.全玻璃真空管太阳能空气集热器热性能试验方法研究[J].太阳能学报,2001,22(2):141-147. WANG Zhifeng. Study on measurement of thermal performance of all-glass evacuated tubular solar air heater[J]. Acta Energiae Solaris Sinica, 2001, 22(2):141-147.
[18] 艾宁,樊建华,计建炳. CFD-PIV 流场分析技术应用于太阳热水系统的研究进展[J].化工进展,2007,26(4):513-518. AI Ning, FAN Jianhua, JI Jianbing. Overview of CFD and PIV application in investigation of solar thermal systems[J]. Chemical Industry and Engineering Progress, 2007, 26(4):513-518.
[19] 艾宁,樊建华,李育敏. 全玻璃真空管型太阳热水器内流场的 CFD模拟[J].北京航空航天大学学报,2008,34(10):1195-1199. AI Ning, FAN Jianhua, LI Yumin. CFD study of fluid flow in an all-glass evacuated tube solar water heater[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10):1195-1199.
[20] 张涛,闫素英,田瑞,等.全玻璃真空管太阳热水器数值模拟研究[J].可再生能源,2011,29(5):10-14. ZHANG Tao, YAN Suying, TIAN Run, et al. The numerical simulation study of all-glass evacuated tube solar water heater[J]. Renewable Energy Resources, 2011, 29(5):10-14.
[21] 张涛,韩吉田,闫素英,等.全玻璃真空管太阳热水器影响因素的数值模拟研究[J].可再生能源,2012,30(10):1-5. ZHANG Tao, HAN Jitian, YAN Suying, et al. The numerical simulation study on influencing factors in all-glass evacuated tube solar water heater[J]. Renewable Energy Resources, 2012, 30(10):1-5.
[22] 王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:1-23.
[23] 温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:53-105.
[24] 过增元.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004:1-290.
[25] 李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010:1-360.
[1] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[2] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[3] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[4] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[5] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[6] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[7] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[8] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[9] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[10] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
[11] 秦明臣, 董勇, 崔琳, 睢辉, 刘景龙. 双循环湿法烟气脱硫流动传质模拟[J]. 山东大学学报(工学版), 2015, 45(5): 88-94.
[12] 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94.
[13] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
[14] 周前, 赵德刚. 水平旋喷桩在富水砂层浅埋暗挖隧道中的应用[J]. 山东大学学报(工学版), 2014, 44(4): 52-57.
[15] 张文俊,李术才,苏茂鑫*,薛翊国,邱道宏. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报(工学版), 2014, 44(3): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!