您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 35-42.doi: 10.6040/j.issn.1672-3961.1.2015.165

• 机器学习与数据挖掘 • 上一篇    下一篇

一种基于话题演化的意见领袖发现方法

王祎珺1,张晖2*,李波1,3,杨春明1,赵旭剑1   

  1. 1. 西南科技大学计算机科学与技术学院, 四川 绵阳 621010;2. 西南科技大学教育信息化推进办公室, 四川 绵阳 621010; 3.中国科学技术大学计算机科学与技术学院, 安徽 合肥 230027
  • 收稿日期:2015-05-12 出版日期:2016-04-20 发布日期:2015-05-12
  • 通讯作者: 张晖(1972— ),男,安徽宿州人,教授,博士,主要研究方向为文本挖掘与知识工程. E-mail: zhanghui@swust.edu.cn E-mail:anny6629882@163.com
  • 作者简介:王祎珺(1991— ),女,四川绵阳人,硕士研究生,主要研究方向为社交网络,舆情演化.E-mail:anny6629882@163.com
  • 基金资助:
    四川省教育厅资助项目(14ZB0113,12ZB326);绵阳网络融合实验室资助项目(12ZXWK04);西南科技大学博士基金资助项目(12zx7116)

A method of opinion leaders discovering based on the topical evolution

WANG Yijun1, ZHANG Hui2*, LI Bo1,3, YANG Chunming1, ZHAO Xujian1   

  1. 1.School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
    2. Educational Informationization Office, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
    3. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
  • Received:2015-05-12 Online:2016-04-20 Published:2015-05-12

摘要: 微博中的意见领袖不仅在社交网络的信息传播中发挥着举足轻重的作用,而且在网络舆情演化中也表现出显著的意见代表性。针对已有的意见领袖挖掘方法仅从复杂网络或者基本图模型来建模发现意见领袖,忽略了意见领袖在具体的话题演化中的意见代表性的问题,提出了基于话题演化的意见领袖发现的方法。该方法首先根据用户之间的交互构建图模型,然后利用寻找中心节点的图论算法挖掘潜在意见领袖,再利用话题演化模型判断潜在意见领袖的演化中心度,最后发现在整体舆情上的具有意见代表性的真实意见领袖。在新浪微博的话题数据集上的试验结果表明,该算法较仅考虑网络模型的意见领袖发现方法更优。

关键词: 意见领袖, 意见代表性, 演化中心度, 图模型, 微博, 话题演化

Abstract: Existing studies about opinion leaders mining only adopted complex network methods or built graph model from networks, which ignored the specific role that opinion leaders play in the evolution of public opinion. To solve this problem, an opinion leaders discovering method based on the topic all evolution was presented. First, this method found latent opinion leaders by building a graph model based on the interaction between users and using the graph theory algorithm of looking for central node. Second, the evolution model of public opinion was used to judge the opinion representation of these opinion leaders. Finally, the true opinion leaders were found out, which had real lead resistance in the overall evaluation of public opinion. Experiment based on Sina MicroBlog datasets showed that this method performed better than those methods only consider the network model.

Key words: topical evolution, opinion leaders, center of evolution, opinion representation, microblog, graph model

中图分类号: 

  • TP391
[1] 骆岗. 微博对社会交往的影响研究[D]. 成都:成都理工大学, 2013. LUO Gang. Study on influence of micro-blog social interaction[D]. Chengdu:Chengdu University of Technology, 2013.
[2] 田占伟, 隋玚. 基于复杂网络理论的微博信息传播实证分析[J]. 图书情报工作,2012, 56(8):42-46. TIAN Zhanwei, SUI Chang. Empirical analysis of microblogging information dissemination based on complex network theory[J]. Library and Information Service, 2012, 56(8):42-46.
[3] ZHOU H, ZENG D, ZHANG C. Finding leaders from opinion networks[C] //IEEE International Conference on Intelligence and Security Informatics. Dallas, Texas, USA:IEEE, 2009:266-268.
[4] 肖宇, 许炜, 夏霖. 网络社区中的意见领袖特征分析[J]. 计算机工程与科学, 2011, 33(1):150-156. XIAO Yu, XU Wei, XIA Lin. A feature analysis of the opinion leader in on-line communities[J]. Computer Engineering & Science, 2011, 33(1):150-156.
[5] LYU L, ZHANG Y C, YEUNG C H, et al. Leaders in social networks, the delicious case[J]. PloS One, 2011, 6(6):1-9.
[6] 周而重,钟宁,黄佳进.基于意见领袖引导作用的网络舆论演化研究[J]. 计算机科学,2013, 40(11):287-290. ZHOU Erzhong, ZHONG Ning, HUANG Jiajin. The study of online public opinion opinion evolution under guiding role of opinion leaders[J]. Computer Science, 2013, 40(11):287-290.
[7] ROMERO D M, GALUBA W, ASUR S, et al. Influence and passivity in social media[M] //Machine learning and knowledge discovery in databases. Berlin Heidelberg:Springer, 2011:18-33.
[8] HE Y, LIN C, GAO W, et al. Dynamic Joint sentiment-topic model[J]. ACM Transactions on Intelligent Systems & Technology, 2013, 5(1):328.
[9] 兰月新,邓新元. 突发事件网络舆情演进规律模型研究[J].情报杂志,2011, 30(8):47-50. LAN Yuexin, DENG Xinyuan. Research on the evolution model of network public opinion of sudden events[J]. Journal of Information, 2011, 30(8):47-50.
[10] ZHU Y, LI W, CAI X. Opinion evolution on a BA scaling network[J]. Physica A:Statistical Mechanics and its Applications, 2013, 392(24):6596-6602.
[11] KOUTN'IK J, GREFF K, GOMEZ F, et al. A clockwork RNN[C] //International Conference on Machine Learning. Beijing, China:ICML, 2014:1863-1871.
[12] DRUCKMAN J N, FEIN J, LEEPER T J. A source of bias in public opinion stability[J]. American Political Science Review, 2012, 106(2):430-454.
[13] 陈涛,林杰. 基于搜索引擎关注度的网络舆情时空演化比较分析—以谷歌趋势和百度指数比较为例[J]. 情报杂志,2013, 32(3):7-10. CHEN Tao, LIN Jie. Comparative analysis of temporal spatial evolution of online public opinion based on search engine attention-cases of google trends and baidu index[J]. Journal of Information, 2013, 32(3):7-10.
[14] ZHANG Y. The evolution of public opinion in social simulation[C] //2014 Seventh International Joint Conference on Computational Sciences and Optimization(CSO). Beijing, China:IEEE, 2014:343-345.
[15] SOUZA S R, GONÇALVES S. A dynamical model for competing opinions[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2012, 85(85):226-253.
[16] WANG XUERUI,ANDREW MCCALLUM. Topics over time:a non-markov continuous-time model of topical trends[C] //Proceedings of International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA:ACM, 2006:424-433.
[17] ALSUMAIT L, BARBARA D, DOMENICONI C. On-line LDA:adaptive topic models for mining text streams with applications to topic detection and tracking[C] // IEEE International Conference on Data Mining. Pisa, Italy:IEEE, 2008:3-12.
[18] DAVID M,BLEI JOHN D,LAFFERTY. Dynamic topic models[C] //Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA:ICML, 2006:113-120.
[19] PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking:bringing order to the web[R]. California, USA:Stanford University, 1998:1-17.
[20] 潘崇霞. 网络舆情演化的阶段分析[J]. 计算机与现代化,2011, 194(10):203-206. PAN Congxia. Stage analysis of the evolution of online public opinion[J]. Computer and Modernization, 2011, 194(10):203-206.
[21] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析[J]. 现代图书情报技术, 2013(6):55-62. XIONG Tao, HE Yue. Identification and analysis of opinion leaders in the microblogging forwarding network[J]. Modern Library and Information Technology, 2013(6):55-62.
[22] LIN Yan, LI Huaxian, LIU Xueqiao, et al. Hot topic propagation model and opinion leader identifying model in microblog network[J]. Abstract & Applied Analysis, 2013, special issue(4):2541-2565.
[23] 吴岘辉, 张晖, 杨春明,等. 一种话题相关的微博意见领袖挖掘算法[J]. 小型微型计算机系统, 2014, 35(10):2296-2301. WU Xianhui, ZHANG Hui, YANG Chunming, et al. A mining algorithm of topics related microblogging opinion leaders[J]. Small Micro Computer Systems, 2014, 35(10):2296-2301.
[24] BAO T, CAO H, CHEN E, et al. An unsupervised approach to modeling personalized contexts of mobile users[J]. Knowledge and information systems, 2012, 31(2):345-370.
[25] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine Learning Research, 2003(3):993-1022.
[26] 卢文羊, 徐佳一, 杨育彬. 基于 LDA 主题模型的社会网络链接预测[J]. 山东大学学报(工学版), 2014, 44(6):26-31. LU Wenyang, XU Jiayi, YANG Yubin. Prediction based on the theme of social network links LDA model[J]. Journal of Shandong University(Engineering Science), 2014, 44(6):26-31.
[1] 吴树芳,徐建民. 基于HITS算法的微博用户可信度评估[J]. 山东大学学报(工学版), 2016, 46(5): 7-12.
[2] 周咏梅1,阳爱民1,林江豪2. 中文微博情感词典构建方法[J]. 山东大学学报(工学版), 2014, 44(3): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[6] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[7] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .
[8] 李善评,胡振,孙一鸣,甄博如,张启磊,曹翰林 . 新型钛基PbO2电极的制备及电催化性能研究[J]. 山东大学学报(工学版), 2007, 37(3): 109 -113 .
[9] 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1 -6 .
[10] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .