您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 40-50.doi: 10.6040/j.issn.1672-3961.0.2024.343

• 电气工程——智慧能源专题 • 上一篇    

考虑初始故障状态和继发故障风险的关键线路辨识方法

李长城1,罗燕婷1*,王东宏2,康海鹏3,潘松1   

  1. 1.广西大学电气工程学院, 广西 南宁 530004;2.广西电网有限责任公司玉林供电局, 广西 玉林 537006;3.电力传输与功率变换控制教育部重点实验室(上海交通大学), 上海 200240
  • 发布日期:2025-10-17
  • 作者简介:李长城(1989— ),男,广西玉林人,助理教授,硕士生导师,博士,主要研究方向为电力系统保护与控制、恢复等. E-mail:lichangcheng@gxu.edu.cn. *通信作者简介:罗燕婷(1999— ),女,广西南宁人,硕士研究生,主要研究方向为电力系统故障预防与控制. E-mail:2212392083@st.gxu.edu.cn
  • 基金资助:
    广西自然科学基金资助项目(2025GXNSFAA069510)

A critical line identification method considering source fault state and secondary fault risk

LI Changcheng1, LUO Yanting1*, WANG Donghong2, KANG Haipeng3, PAN Song1   

  1. LI Changcheng1, LUO Yanting1*, WANG Donghong2, KANG Haipeng3, PAN Song1(1. School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi, China;
    2. Yulin Power Supply Bureau of Guangxi Power Grid Co., Ltd., Yulin 537006, Guangxi, China;
    3. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education(Shanghai Jiao Tong University), Shanghai 200240, China
  • Published:2025-10-17

摘要: 为了有效识别复杂电力系统中的关键环节,提出一种考虑初始故障状态和继发故障风险的关键线路辨识方法。在初始故障发生阶段,基于加权潮流熵、加权网架熵和加权潮流冲击熵3个评估系统状态的指标表征初始故障水平;结合负荷损失风险与网架损失风险2个表征继发故障风险的指标,评估电网故障的演化发展;采用客观熵权法计算各个指标的权重,建立电网关键线路综合辨识指标。以IEEE 118节点测试系统作为算例进行仿真,结果表明,本研究方法辨识得到的关键线路受到攻击后,系统网络效能降幅最大且相较于其他方法多为最低,验证了所提方法的有效性。

关键词: 初始故障, 继发故障, 网架损失风险, 熵权法, 网络效能

Abstract: To effectively identify the key links in complex power system, a critical line identification method considering source fault state and secondary fault risk was proposed. In the source fault phase, weighted power flow entropy, weighted grid entropy, and weighted power flow impact entropy—three indicators for evaluating the system state—were proposed to characterize the source fault level. Load loss risk and grid loss risk—two indicators for characterizing the secondary fault risk—were combined to evaluate the development of power system faults. The objective entropy weight method determined each metric's weight, producing composite indicators for critical line identification. Simulations were conducted on the IEEE 118-bus test system. The results demonstrated that attacks on the critical lines identified by this method led to the largest decline in system network efficiency, which was consistently lower compared to other methods, confirming the validity of the proposed approach.

Key words: source fault, secondary fault, grid loss risk, entropy weight method, network efficiency

中图分类号: 

  • TM71
[1] 杨太华, 秦静, 李志翔. 基于不同政策环境的“一带一路”电力工程安全投资决策演化博弈分析[J]. 上海电力大学学报, 2021, 37(4): 373-379. YANG Taihua, QIN Jing, LI Zhixiang. Evolutionary game analysis of safety investment in “the Belt and Road” power investment project based on different policy environment[J]. Journal of Shanghai University of Electric Power, 2021, 37(4): 373-379.
[2] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6191. SUN Huadong, XU Tao, GUO Qiang, et al. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6191.
[3] 王伟胜, 林伟芳, 何国庆, 等. 美国得州2021年大停电事故对我国新能源发展的启示[J]. 中国电机工程学报, 2021, 41(12): 4033-4042. WANG Weisheng, LIN Weifang, HE Guoqing, et al. Enlightenment of 2021 Texas blackout to the renewable energy development in China[J]. Proceedings of the CSEE, 2021, 41(12): 4033-4042.
[4] 张鹏飞, 麻常辉, 李威, 等. 2021年欧洲电网两次解列事故分析及对中国电网安全的思考[J]. 电力系统自动化, 2021, 45(24): 22-29. ZHANG Pengfei, MA Changhui, LI Wei, et al. Analysis of two splitting accidents of European power grid in 2021 and consideration on power grid security in China[J]. Automation of Electric Power Systems, 2021, 45(24): 22-29.
[5] 王国春, 董昱, 许涛, 等. 巴西“8.15”大停电事故分析及启示[J]. 中国电机工程学报, 2023, 43(24): 9461-9469. WANG Guochun, DONG Yu, XU Tao, et al. Analysis and lessons of Brazil blackout event on August 15, 2023[J]. Proceedings of the CSEE, 2023, 43(24): 9461-9469.
[6] 朱大锐, 王睿, 程文姬, 等. 基于改进PageRank算法的输电网关键节点辨识方法研究[J]. 电力系统保护与控制, 2022, 50(5): 86-93. ZHU Darui, WANG Rui, CHENG Wenji, et al. Critical transmission node identification method based on improved PageRank algorithm[J]. Power System Pro-tection and Control, 2022, 50(5): 86-93.
[7] ESLAMI A, HUANG C, ZHANG J S, et al. Cascading failures in load-dependent finite-size random geometric networks[J]. IEEE Transactions on Network Science and Engineering, 2016, 3(99): 183-196.
[8] 樊陈, 姚建国, 张琦兵, 等. 英国“8·9”大停电事故振荡事件分析及思考[J]. 电力工程技术, 2020, 39(4): 34-41. FAN Chen, YAO Jianguo, ZHANG Qibing, et al. Reflection and analysis for oscillation of the blackout event of 9 August 2019 in UK[J]. Electric Power Engineering Technology, 2020, 39(4): 34-41.
[9] 严道波, 文劲宇, 杜治, 等. 2021年得州大停电事故分析及其对电网规划管理的启示[J]. 电力系统保护与控制, 2021, 49(9): 121-128. YAN Daobo, WEN Jinyu, DU Zhi, et al. Analysis of Texas blackout in 2021 and its enlightenment to power system planning management[J]. Power System Protec-tion and Control, 2021, 49(9): 121-128.
[10] 徐岩, 郅静. 基于加权潮流熵的电网故障传播脆弱线路识别[J]. 现代电力, 2016, 33(3): 88-94. XU Yan, ZHI Jing. Identification of vulnerable lines for fault propagation in powergrid based on the weighted power flow entropy[J]. Modern Electric Power, 2016, 33(3): 88-94.
[11] 贾燕冰, 何海丹, 谢栋, 等. 基于绝对潮流的关键线路辨识方法[J]. 太原理工大学学报, 2017, 48(4): 602-607. JIA Yanbing, HE Haidan, XIE Dong, et al. Identifi-cation of vulnerable line in power systems based on absolute flow[J]. Journal of Taiyuan University of Technology, 2017, 48(4): 602-607.
[12] 于群, 屈玉清, 石良. 基于综合关键度的电网关键线路辨识[J]. 科学技术与工程, 2018, 18(3): 246-252. YU Qun, QU Yuqing, SHI Liang. Identification of critical lines in power grid based on comprehensive critical degree[J]. Science Technology and Engineering, 2018, 18(3): 246-252.
[13] 魏震波, 易刚春, 关翔友, 等. 基于系统熵变特征分析的电网关键线路辨识方法[J]. 智慧电力, 2020, 48(11): 34-39. WEI Zhenbo, YI Gangchun, GUAN Xiangyou, et al. Identification of critical lines in power system based on analysis of entropy variation characteristics[J]. Smart Power, 2020, 48(11): 34-39.
[14] 胡钢, 王乐萌, 卢志宇, 等. 基于节点多阶邻居递阶关联贡献度的重要性辨识[J]. 山东大学学报(工学版), 2024, 54(1): 1-10. HU Gang, WANG Lemeng, LU Zhiyu, et al. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes[J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10.
[15] 徐岩, 雷小双, 秦彬, 等. 基于综合重要度的电网关键线路辨识方法[J]. 电力建设, 2019, 40(7): 85-90. XU Yan, LEI Xiaoshuang, QIN Bin, et al. Method based on comprehensive importance for critical line identification in a power grid[J]. Electric Power Construction, 2019, 40(7): 85-90.
[16] BARABASI A L,ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[17] 丁明, 韩平平. 基于小世界拓扑模型的大型电网脆弱性评估算法[J]. 电力系统自动化, 2006, 30(8): 7-10. DING Ming, HAN Pingping. Small-world topological model based vulnerability assessment algorithm for large-scale power grid[J]. Automation of electric power systems, 2006, 30(8): 7-10.
[18] 林思宇, 文娟, 屈星, 等. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54. LIN Siyu, WEN Juan, QU Xing, et al. Optimization of distribution network structure and identification of key nodes and lines based on TOPSIS method[J]. Complex System and Complexity Science, 2024, 21(3): 46-54.
[19] 潘松, 李长城, 康海鹏, 等. 考虑停运概率熵和网架结构熵的电网关键线路辨识方法[J]. 电力系统自动化, 2025, 49(1): 139-149. PAN Song, LI Changcheng, KANG Haipeng, et al. Identification method for key lines of power grid considering outage probability entropy and grid structure entropy[J]. Automation of Electric Power Systems, 2025, 49(1): 139-149.
[20] 黎寿涛, 夏成军, 钟明明, 等. 基于故障链聚类算法的电网关键线路辨识[J]. 电力工程技术, 2022, 41(1): 84-92. LI Shoutao, XIA Chengjun, ZHONG Mingming, et al. Critical line identification of power grid based on fault chain clustering algorithm[J]. Electric Power Enginee-ring Technology, 2022, 41(1): 84-92.
[21] 王峥, 陆建忠, 牟善科, 等. 台风灾害下考虑脆弱线路加固的新型电力系统弹性提升方法[J]. 电测与仪表, 2024, 61(6): 94-102. WANG Zheng, LU Jianzhong, MOU Shanke, et al. Enhancing resilience of novel power system through consideration of hardening for vulnerable lines under hurricane disasters[J]. Electrical Measurement & Instru-mentation, 2024, 61(6): 94-102.
[22] 刘彤, 李少岩, 顾雪平, 等. 基于图注意力网络算法的电网连锁故障关键线路辨识[J]. 中国电机工程学报, 2022, 42(15): 5448-5458. LIU Tong, LI Shaoyan, GU Xueping, et al. Critical line identification of cascading failures in power grid based on graph attention network algorithm[J]. Proceedings of the CSEE, 2022, 42(15): 5448-5458.
[23] 李妍莎, 蔡晔, 曹一家, 等. 基于潮流转移相似性的连锁故障高危环节辨识[J]. 中国电机工程学报, 2024, 44(23): 9122-9133. LI Yansha, CAI Ye, CAO Yijia, et al. High-risk links identification for cascading failures based on the power flow transfer similarity[J]. Proceedings of the CSEE, 2024, 44(23): 9122-9133.
[24] 沈政委, 孙华东, 仲悟之, 等. 基于关键事件的高比例新能源电力系统故障连锁演化规律分析[J]. 电力系统自动化, 2022, 46(24): 57-65. SHEN Zhengwei, SUN Huadong, ZHONG Wuzhi, et al. Key event based analysis of evolution law of cascading failures in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(24): 57-65.
[25] 屠竞哲, 何剑, 安学民, 等. 巴基斯坦“2023.1.23”大停电事故分析及启示[J]. 中国电机工程学报, 2023, 43(14): 5319-5328. TU Jingzhe, HE Jian, AN Xuemin, et al. Analysis and lessons of Pakistan blackout event on January 23, 2023[J]. Proceedings of the CSEE, 2023, 43(14): 5319-5328.
[26] 李志民, 李卫星, 李勃龙. 熵原理及其在电力系统可靠性中的应用[J]. 电力系统及其自动化学报, 2001(3): 37-39. LI Zhimin, LI Weixing, LI Bolong. Entropy principle and its application in power system reliability[J]. Proceedings of the EPSA, 2001(3): 37-39.
[27] 李美成, 梅文明, 刘永强, 等. 基于改进负载潮流熵指标准确辨识电网脆性支路的方法[J]. 电网技术, 2019, 43(3): 1026-1033. LI Meicheng, MEI Wenming, LIU Yongqiang, et al. Accurate identification method of brittle branches in power grid based on improved load flow entropy indexes[J]. Power System Technology, 2019, 43(3): 1026-1033.
[28] 刘文颖, 蔡万通, 张宁, 等. 基于联合加权熵的电网自组织临界状态演化[J]. 中国电机工程学报, 2015, 35(6): 1363-1370. LIU Wenying, CAI Wantong, ZHANG Ning, et al. Evolution of self-organizing of grid critical state based on united weighted entropy theory[J]. Proceedings of the CSEE, 2015, 35(6): 1363-1370.
[29] 周依希, 李晓明, 瞿合祚, 等. 基于AHP-灰色关联度的复杂电网节点综合脆弱性评估[J]. 电力系统保护与控制, 2018, 46(23): 86-93. ZHOU Yixi, LI Xiaoming, QU Hezuo, et al. Node integrated vulnerability assessment of complex power grid based on AHP-gray relational degree method[J]. Power System Protection and Control, 2018, 46(23): 86-93.
[30] 吴昊, 朱自伟. 基于熵权-层次分析法综合指标的电网关键线路辨识[J]. 中国电力, 2020, 53(5): 39-47. WU Hao, ZHU Ziwei. Key lines identification in power grid based on comprehensive index calculated by the entropy weight-analytical hierarchy process[J]. Electric Power, 2020, 53(5): 39-47.
[31] 鞠文云, 李银红. 基于最大流传输贡献度的电力网关键线路和节点辨识[J]. 电力系统自动化, 2012, 36(9): 6-12. JU Wenyun, LI Yinhong. Identification of critical lines and nodes in power grid based on maximum flow transmission contribution degree[J]. Automation of Electric Power System, 2012, 36(9): 6-12.
[1] 梁涛,刘亚祥,杨硕,徐越,王庆松. 山东省综合能源系统可持续发展能力评价[J]. 山东大学学报 (工学版), 2024, 54(4): 159-168.
[2] 葛维春,李昭,赵东,李振宇,叶青,傅予,于娜. 含电极式电锅炉的地区电网电源侧综合效益分析[J]. 山东大学学报 (工学版), 2020, 50(5): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!