您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 90-99.doi: 10.6040/j.issn.1672-3961.0.2024.335

• 能动工程——热管理专题 • 上一篇    

多热源冷却的新型环路热管设计及性能

柳洋1,朱波1,陈超伟2,陈岩2,辛公明2*   

  1. 1.山东省特种设备检验研究院集团有限公司, 山东 济南 250101;2.山东大学核科学与能源动力学院, 山东 济南 250061
  • 发布日期:2025-12-22
  • 作者简介:柳洋(1995— ),男,山东烟台人,工程师,博士,主要研究方向为强化传热传质及节能技术. E-mail:youngofsc@126.com. *通信作者简介:辛公明(1977— ),男,山东日照人,教授,博士生导师,博士,主要研究方向为功率器件热管理. E-mail:xingm@sdu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFB4004400);山东省重点研发计划资助项目(2022SFGC0801);山东省自然科学基金资助项目(ZR2023ME184)

Design and performance of a novel loop heat pipe for multi-heat-sources cooling

LIU Yang1, ZHU Bo1, CHEN Chaowei2, CHEN Yan2, XIN Gongming2*   

  1. LIU Yang1, ZHU Bo1, CHEN Chaowei2, CHEN Yan2, XIN Gongming2*(1. Shandong Special Equipment Inspection Institute Group Co., Ltd., Jinan 250101, Shandong, China;
    2. School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-12-22

摘要: 为了解除环路热管在多热源工况下的使用限制,拓展环路热管内工质的循环换热效率,在传统环路热管基础上,设计制造一种针对多热源冷却的新型环路热管。该环路热管具有一个蒸发器和多个热沉部件,通过内部流体工质循环将蒸发器及热沉处的热量吸收并在冷凝器处释放,实现同时对多个热源冷却。通过对传统环路热管进行优化设计,制造上述结构的新型环路热管,进一步探究新型环路热管中热沉数量变化对运行性能的影响。通过试验验证新型环路热管运行的可行性,其内部产生的循环流量最高达45 mL/min,相较于优化设计前,系统整体散热量最高提升90%。在此基础上,对不同结构的新型环路热管启动及稳定运行性能参数进行对比,结果显示,新型环路热管中热沉数量变化会对内部工质的循环阻力产生显著影响,进而影响系统内工质的循环流量,决定蒸发器和热沉的冷却能力。

关键词: 环路热管, 多热源, 冷却系统, 相变, 多孔介质

Abstract: To overcome the limitations of loop heat pipes under multi-heat-sources conditions and enhance the circulation and heat exchange efficiency of the working fluid, a novel loop heat pipe was designed and fabricated based on the traditional structure to provide cooling for multi-heat-sources simultaneously. This loop heat pipe featured one evaporator and multiple heat sinks. By circulating the working fluid internally, it absorbed heat from the evaporator and heat sinks and released it at the condenser, achieving simultaneous cooling of multi-heat-sources. Through the optimization of the traditional loop heat pipe design, the novel structure was manufactured, and the effect of varying the number of heat sinks on its operational performance was further investigated. Experimental tests verified the feasibility of the new loop heat pipe, showing that the system generated a maximum circulation flow rate of 45 mL/min. Compared with the pre-optimized design, the overall heat dissipation capacity of the system increased by up to 90%. A comparison of the startup and stable operation performance parameters of different structural configurations showed that changes in the number of heat sinks affected the circulation resistance of the working fluid inside the system, thereby influencing the circulation flow rate and ultimately determining the cooling capacity of the evaporator and heat sinks.

Key words: loop heat pipe, multi-heat-sources, cooling system, phase change, porous media

中图分类号: 

  • TK172.4
[1] 陈学东, 范志超, 陈永东, 等. 我国高端压力容器设计制造与维护技术进展[J]. 机械工程学报, 2023, 59(20): 18-33. CHEN Xuedong, FAN Zhichao, CHEN Yongdong, et al. Technological progress on design, manufacturing and maintenance of high-end pressure vessels in China[J]. Journal of Mechanical Engineering, 2023, 59(20): 18-33.
[2] 王新华, 杨兆瀚, 黄国健, 等. 特种机电设备安全检测、监测与风险管理研究进展[J]. 自动化与信息工程, 2013, 34(1): 1-5. WANG Xinhua, YANG Zhaohan, HUANG Guojian, et al. Development of special mechanical and electrical equipment safety testing, monitoring and risk management[J]. Automation & Information Engineering, 2013, 34(1): 1-5.
[3] MOU X, LU W, CHEN L. Safety management and preventive measures for inspection and testing personnel of chemical special equipment[J]. Industrial Engineering and Innovation Management, 2023, 7(8): 14-18.
[4] 陈国华, 刘晖. 特种机电设备安全科技支撑体系建设探讨[J]. 工业安全与环保, 2012, 38(1): 74-77. CHEN Guohua, LIU Hui. Discussion on construction of safety scientific and technological support system for special electromechanical equipment[J]. Industrial Safety and Environmental Protection, 2012, 38(1): 74-77.
[5] DWIVEDI S K, VISHWAKARMA M, SONI A. Advan-ces and researches on non destructive testing: a review[J]. Materials Today: Proceedings, 2018, 5(2): 3690-3698.
[6] WANG B, ZHONG S C, LEE T L, et al. Non-destructive testing and evaluation of composite materials/structures: a state-of-the-art review[J]. Advances in Mechanical Engineering, 2020, 12(4): 1-28.
[7] 沈功田. 承压设备无损检测与评价技术发展现状[J]. 机械工程学报, 2017, 53(12): 1-12. SHEN Gongtian. Development status of nondestructive testing and evaluation technique for pressure equipment[J]. Journal of Mechanical Engineering, 2017, 53(12): 1-12.
[8] WEN L J, ZHANG H B, XIE F. Special equipments with special materials by nondestructive testing technology[J]. Advanced Materials Research, 2013, 675: 192-195.
[9] VASAGAR V, HASSAN M K, ABDULLAH A M, et al. Non-destructive techniques for corrosion detection: a review[J]. Corrosion Engineering, Science and Techno-logy, 2024, 59(1): 56-85.
[10] LAMPMAN S, MULHERIN M, SHIPLEY R. Non-destructive testing in failure analysis[J]. Journal of Failure Analysis and Prevention, 2022, 22(1): 66-97.
[11] 郁朋, 代秋声, 邢晓曼, 等. 大束流场发射阴极 X 射线管的阳极设计[J]. 原子能科学技术, 2014, 48(6): 1127-1131. YU Peng, DAI Qiusheng, XING Xiaoman, et al. Design of large beam field emission cathode X-ray tube anode[J]. Atomic Energy Science and Technology, 2014, 48(6): 1127-1131.
[12] NAYAKSHIN S, KAZANAS D, KALLMAN T R. Thermal instability and photoionized X-ray reflection in accretion disks[J]. The Astrophysical Journal, 2000, 537(2): 833-852.
[13] KARNAUKHOV V G, KARNAUKHOVA T V, MCGILLICUDDY O. Thermal failure of flexible rectangular viscoelastic plates with distributed sensors and actuators[J]. Journal of Engineering Mathematics, 2013, 78(1): 199-212.
[14] BALAKRISHNAN V, PHAN H P, DINH T, et al. Thermal flow sensors for harsh environments[J]. Sensors, 2017, 17(9): 2061.
[15] DU W X, ZHAO Y F, ROY R, et al. A review of miniaturised non-destructive testing technologies for in-situ inspections[J]. Procedia Manufacturing, 2018, 16: 16-23.
[16] HASSANI S, DACKERMANN U. A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring[J]. Sensors, 2023, 23(4): 2204.
[17] JIAO J, DE X L, CHEN Z W, et al. Integrated circuit failure analysis and reliability prediction based on physics of failure[J]. Engineering Failure Analysis, 2019, 104: 714-726.
[18] LAWAG R A, ALI H M. Phase change materials for thermal management and energy storage: a review[J]. Journal of Energy Storage, 2022, 55: 105602.
[19] HE Z Q, YAN Y F, ZHANG Z E. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review[J]. Energy, 2021, 216: 119223.
[20] QIAN C, GHEITAGHY A M, FAN J J, et al. Thermal management on IGBT power electronic devices and modules[J]. IEEE Access, 2018, 6: 12868-12884.
[21] SIDDIQUE A R M, MAHMUD S, VAN HEYST B. A comprehensive review on a passive(phase change materials)and an active(thermoelectric cooler)battery thermal management system and their limitations[J]. Journal of Power Sources, 2018, 401: 224-237.
[22] TONG X C. Advanced materials for thermal management of electronic packaging[M]. Heidelberg, Germany: Springer Science & Business Media, 2011: 6-10.
[23] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4): 163-174.
[24] ANANDAN S S, RAMALINGAM V. Thermal manage-ment of electronics: a review of literature[J]. Thermal Science, 2008, 12(2): 5-26.
[25] KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212.
[26] LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834.
[27] 田长青, 徐洪波, 曹宏章, 等. 高功率固体激光器冷却技术[J]. 中国激光, 2009, 36(7): 1686-1692. TIAN Changqing, XU Hongbo, CAO Hongzhang, et al. Cooling technology for high-power solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1686-1692.
[28] 马永锡, 张红. 电子器件发热与冷却技术[J]. 化工进展, 2006, 25(6): 670-674. MA Yongxi, ZHANG Hong. Heat dissipation of electronics and cooling techniques[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 670-674.
[29] MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657.
[30] AMBIRAJAN A, ADONI A A, VAIDYA J S, et al. Loop heat pipes: a review of fundamentals, operation, and design[J]. Heat Transfer Engineering, 2012, 33(4/5): 387-405.
[31] WANG Z Y, YANG W S. A review on loop heat pipe for use in solar water heating[J]. Energy and Buildings, 2014, 79: 143-154.
[32] NITHINV K. Opportunities, challenges, and state of the art of flexible heat-pipe heat exchangers: a compre-hensive review[J]. Heat Transfer, 2024, 53(2): 893-938.
[1] 何发龙,杜王芳,苗建印,张红星,何江,刘思学,刘畅,赵建福. 氖工质深冷环路热管运行不稳定性仿真分析[J]. 山东大学学报 (工学版), 2025, 55(6): 69-75.
[2] 邵孟伟,袁世飞,周宏志,王乃华. 基于BP神经网络和遗传算法的翅片管结构优化[J]. 山东大学学报 (工学版), 2025, 55(6): 76-82.
[3] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[4] 周鑫晨,章学来,陈跃,刘璐. 基于理论的相变储能换热器传热性能分析[J]. 山东大学学报 (工学版), 2019, 49(5): 72-84.
[5] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[6] 夏婕1,2, 常海萍1*. 离心力场下多孔介质中的热驱动现象[J]. 山东大学学报(工学版), 2013, 43(1): 123-126.
[7] 高桂波1, 钱春香2, 岳钦艳3, 王勇威1, 鲁统卫1. 预填埋相变材料对混凝土水化热温升的降低效果[J]. 山东大学学报(工学版), 2011, 41(6): 91-96.
[8] 刘芳1,2,陈宝明2,王丽2. 多孔介质对封闭腔体内对流传热传质的影响[J]. 山东大学学报(工学版), 2011, 41(1): 145-150.
[9] 吴师岗. 相变对ZrO2/SiO2多层膜激光损伤阈值的影响[J]. 山东大学学报(工学版), 2009, 39(1): 114-117.
[10] 王建平,王淑华,耿贵立 . InN半导体纳米晶相变活化能的研究[J]. 山东大学学报(工学版), 2008, 38(2): 42-44 .
[11] 张庆范,崔纳新 . 基于电压相量的三相变压器组别判定方法[J]. 山东大学学报(工学版), 2006, 36(3): 81-85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!