您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 108-116.doi: 10.6040/j.issn.1672-3961.0.2024.132

• 土木工程 • 上一篇    

基于NMR的饱和土渗透系数预测方法

赵晶1,陈诚1*,杜棣宾1,文桃2,简涛2,应赛2,周继强3   

  1. 1.广州地铁设计研究院股份有限公司, 广东 广州 510010;2.长江师范学院建筑物全生命周期健康检测与灾害防治工程研究中心, 重庆 涪陵 408100;3.甘肃省有色金属地质勘查局自然资源部高寒干旱区矿山地质环境修复工程技术创新中心, 甘肃 兰州 730030
  • 发布日期:2025-02-20
  • 作者简介:赵晶(1985— ),男,江苏无锡人,高级工程师,硕士,主要研究方向为轨道交通工程结构岩土设计. E-mail:zhaojing@dtsjy.com. *通信作者简介:陈诚(1990— ),男,安徽安庆人,工程师,硕士,主要研究方向为轨道交通工程结构岩土设计. E-mail:chencheng@dtsjy.com
  • 基金资助:
    国家自然科学基金资助项目(51679131);重庆市教委科学技术研究资助项目(KJQN202101447,KJQN202201426,KJQN202301401,KJQN202301424);自然资源部高寒干旱区矿山地质环境修复工程技术创新中心开放基金资助项目(HHGCKK2203)

NMR-based prediction method for saturated soil permeability coefficient

ZHAO Jing1, CHEN Cheng1*, DU Dibin1, WEN Tao2, JIAN Tao2, YING Sai2, ZHOU Jiqiang3   

  1. 1. Guangzhou Metro Design and Research Institute Co., Ltd., Guangzhou 510010, Guangdong, China;
    2. Engineering Research Centre for Whole Life Cycle Health Detection and Disaster Prevention of Buildings, Changjiang Normal University, Fuling 408100, Chongqing, China;
    3. Natural Resources Ministry High-Cold Arid Zone Mine Geological Environment Restoration Engineering Technology Innovation Center, Gansu Provincial Nonferrous Metals Geological Exploration Bureau, Lanzhou 730030, Gansu, China
  • Published:2025-02-20

摘要: 为改进现有基于核磁共振(nuclear magnetic resonance, NMR)的饱和土渗透系数预测模型,提高NMR技术预测饱和土渗透系数的精度,在NMR弛豫时间T2谱曲线及毛细管理论基础上,考虑毛细管迂曲度对渗透系数的影响,建立适用于饱和土体的渗透系数新模型。为验证该模型的准确性,对取自济南地铁裴家营站的粉质黏土试样进行固结渗透试验和核磁共振试验,分析固结过程中试样孔隙和渗透系数的变化规律,测定不同孔隙比状态下试样的渗透系数及T2谱曲线,利用新模型对试样不同T2谱曲线的饱和渗透系数进行预测,并与已有的4个核磁渗透系数模型预测结果进行比较。结果表明:本次试样的孔隙以小孔隙和中孔隙为主,固结中总孔隙的减小主要源自中孔隙的压缩;试样渗透系数随孔隙比降低而降低,两者间呈幂函数关系;在核磁T2谱曲线和毛细管模型的基础上引入平均迂曲度可有效提高饱和土渗透系数预测精度,较已有模型,本研究新模型的预测值与实测值间的均方根误差降低43.1%~67.0%。

关键词: 核磁共振NMR, 饱和渗透系数, 毛细管理论, 平均迂曲度, T2谱曲线

中图分类号: 

  • TU45
[1] 路林海, 武朝军, 孙捷城, 等. 强竖向渗透济南红黏土的微观孔隙特征及CT渗流试验[J]. 上海交通大学学报, 2022, 56(9): 1218-1226. LU Linhai,WU Chaojun,SUN Jiecheng, et al. Micropore characteristics and CT seepage test of Jinan red clay with a strong vertical permeability[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1218-1226.
[2] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106. ZHU Xiaotian. Numerical simulation analysis of ultra-deep foundation pitinsilty clay formation under seepage[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 98-106.
[3] 孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7. SUN Wenbin, CAO Zhenbo, DONG Faxu. Charac-terization method of rock fracture permeability in fault fracture zone[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1):1-7.
[4] 刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6-30. LIU Songyu, ZHAN Liangtong, HU Liming, et al. Environmental geotechnics: state-of-the-art of theory,testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6-30.
[5] 杨忠翰, 李明宝, 张旭. 孔隙度对黏性土渗透系数影响的试验研究[J]. 科学技术与工程, 2020, 20(3): 1152-1156. YANG Zhonghan, LI Mingbao, ZHANG Xu. Experimental research on the influence of porosity on permeability coefficient of clay soil[J]. Science Technology and Engineering, 2020, 20(3): 1152-1156.
[6] 房营光, 徐亚飞, 谷任国, 等. 基于有效孔隙分布特征的黏土渗透系数公式推导[J]. 人民长江, 2023, 54(1): 227-232. FANG Yingguang, XU Yafei, GU Renguo, et al. Formula derivation of clay permeability coefficient based on effective pore distribution characteristics[J]. Yangtze River, 2023, 54(1): 227-232.
[7] 陶东新,梧松,刘洪涛,等.考虑有效孔隙率变化的淤泥固化土渗透性研究[J].长江科学院院报, 2024, 41(11):136-143. TAO Dongxin, WU Song, LIU Hongtao, et al. Study on the permeability characteristics of sludge soil considering the variation of effective porosity[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(11):136-143.
[8] ZENG L L, CAI Y Q, CUI Y J, et al. Hydraulic conductivity of reconstituted clays based on intrinsic compression[J].Géotechnique, 2020, 70(3): 268-275.
[9] 杨周洁,于海浩,汤沁,等.氯化钠溶液对膨胀土膨胀力及孔隙分布影响的研究[J].岩土工程学报, 2019, 41(增刊2):77-80. YANG Zhoujie, YU Haihao, TANG Qin, et al. Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl.2):77-80.
[10] 李彰明, 曾文秀, 高美连, 等. 典型荷载条件下淤泥孔径分布特征核磁共振试验研究[J]. 物理学报, 2014, 63(5):057401. LI Zhangming, ZENG Wenxiu, GAO Meilian, et al. Nuclear magnetic resonance experimental study on the characteristics of pore-size distribution in muck under several typical loading cases[J]. Acta Physica Sinica, 2014, 63(5):057401.
[11] LIANG W Y, YAN R T, XU Y F, et al. Swelling pressure of compacted expansive soil over a wide suction range[J]. Applied Clay Science, 2021, 203: 106018.
[12] 邓克俊 著,谢然红 编. 核磁共振测井理论及应用[M]. 东营: 中国石油大学出版社, 2010.
[13] KENYON W E, DAY P I, STRALEY C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[J]. SPE Formation Evaluation, 1988, 3(3): 622-636.
[14] 张娜,王若晨,张婧雯,等. 基于NMR的煤系泥页岩储层渗透率预测及影响因素分析 [J]. 煤炭技术, 2023, 42(3): 148-154. ZHANG Na, WANG Ruochen, ZHANG Jingwen, et al. Prediction of coal measure shale reservoir permeability and analysis of influencing factors based on NMR[J]. Coal Technology, 2023, 42(3): 148-154.
[15] 吴广水,田慧会,郝丰富,等.基于核磁共振T2时间分布快速预测不同干密度土体的渗透系数[J]. 岩土力学, 2023, 44(增刊1): 513-520. WU Guangshui, TIAN Huihui, HAO Fengfu, et al. Rapid prediction of the permeability coefficient for soil of different dry densities with NMR T2 distribution[J]. Rock and Soil Mechanics, 2023, 44(Suppl.1): 513-520.
[16] CHILDS E C, COLLIS-GEORGE N. The permeability of porous materials[J].Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences, 1950, 201(1066): 392-405.
[17] MARSHALL T J. A relation between permeability and size distribution of pores[J]. Journal of Soil Science, 1958, 9(1): 1-8.
[18] 陶高梁, 孔令伟. 基于微观孔隙通道的饱和/非饱和土渗透系数模型及其应用[J]. 水利学报, 2017, 48(6): 702-709. TAO Gaoliang, KONG Lingwei. A model for deter-mining the permeability coefficient of saturated and unsaturated soils based on micro pore channel and its application[J]. Journal of Hydraulic Engineering, 2017, 48(6): 702-709.
[19] 陶高梁,彭寅杰,陈银,等. 基于NMR的非饱和土相对渗透系数快速预测新方法 [J]. 岩土工程学报, 2024, 46(3): 470-479. TAO Gaoliang, PENG Yinjie, CHEN Yin, et al. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479.
[20] 蔺文博, 宁贵霞, 马丽娜, 等. 非饱和重塑弱膨胀土微观孔结构特征与水力迂曲度研究[J]. 长江科学院院报, 2024, 41(4): 124-130. LIN Wenbo, NING Guixia, MA Lina, et al. Study on micro-pore structure characteristics and hydraulic tortuosity of unsaturated remolded weak expansive soil[J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(4): 124-130.
[21] GHANBARIAN B, HUNT A G, EWING R P, et al. Tortuosity in porous media: a critical review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477.
[22] JIA H L, DING S, WANG Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893.
[23] 林键,杨溢,曹广勇,等. 静水压作用下砂岩渗透特性及渗透率模型改进 [J]. 地下空间与工程学报,2024, 20(3): 776-787. LIN Jian, YANG Yi, CAO Guangyong, et al. Study on the permeability characteristics of sandstone under hydrostatic pressure and model improvement[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(3): 776-787.
[24] 刘卫, 邢立. 核磁共振录井[M]. 北京:石油工业出版社, 2011.
[1] 张强勇,燕志超,郭鑫. 地下实验室开挖围岩损伤评价方法及应用[J]. 山东大学学报 (工学版), 2023, 53(5): 57-64, 73.
[2] 李婧,张伟俊,李赟鹏,冯春,张一鸣. 浅埋煤层开采诱发地下水渗流过程[J]. 山东大学学报 (工学版), 2023, 53(3): 78-87.
[3] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[4] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[5] 徐子瑶,虞松,付强. 含层状节理岩体力学性质数值模拟研究[J]. 山东大学学报 (工学版), 2020, 50(3): 66-72.
[6] 谢雅娟,虞松,李邦祥,徐翔,朱维申. 含裂隙水预制平面裂隙的启裂理论与试验验证[J]. 山东大学学报 (工学版), 2019, 49(4): 36-43.
[7] 刘健,胡南琦,徐宝军,岳秀丽,齐泊良,仲奇. 水泥基土石坝防渗注浆材料试验[J]. 山东大学学报(工学版), 2018, 48(2): 39-45.
[8] 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43.
[9] 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6.
[10] 陈方明,胡泉光,宁光忠. 三轴应力条件下粉砂质泥岩分级松弛特性[J]. 山东大学学报(工学版), 2017, 47(3): 125-129.
[11] 胡泉光,陈方明,宁光忠. CW-TOPSIS岩爆评判模型及应用[J]. 山东大学学报(工学版), 2017, 47(2): 20-25.
[12] 万利,王春河,王琦,李术才,邵行,江贝,孙会彬,秦乾. 超大断面隧道软弱围岩控制机制及应用[J]. 山东大学学报(工学版), 2017, 47(1): 59-67.
[13] 张伟,李海涛,王剑,王莉. 砂浆模拟裂隙岩体在动静组合荷载下的SHPB试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 97-104.
[14] 蒋明镜, 方威, 司马军. 模拟岩石的平行粘结模型微观参数标定[J]. 山东大学学报(工学版), 2015, 45(4): 50-56.
[15] 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25.
Viewed
Full text
9
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 9

  From local
  Times 9
  Rate 100%

Abstract
60
Just accepted Online first Issue
0 0 60
  From Others local
  Times 57 3
  Rate 95% 5%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!