山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 19-28.doi: 10.6040/j.issn.1672-3961.0.2023.220
• 机器学习与数据挖掘 • 上一篇
张曼,孙凯军*,李翔,孙纪舟
ZHANG Man, SUN Kaijun*, LI Xiang, SUN Jizhou
摘要: 针对工业场景下检测模型参数量多、安全绳易与背景混淆问题,提出一种融合FasterNet和RepVGG的目标检测算法(you only look once version 5 fasternet-repvgg-cutmix-bifpn, YOLOv5s-FRCB)。通过引入轻量级网络结构FasterNet Block和RepVGG Block替换YOLOv5s部分卷积层,显著减少模型参数量和加快检测速度,满足实时性需求;通过BiFPN特征强连通性提升模型特征学习能力;改进Cutmix数据增强方法,随机将目标嵌入输入图像,更新标签,缓解标签类别不平衡问题,提高泛化性。在自建安全设备佩戴检测数据集上进行试验,结果表明:YOLOv5s-FRCB mAP值达到了96.3%,算法模型内存减少34%,是一种高效实用的安全设备佩戴检测方法;YOLOv5s-FRCB能在保证准确率的同时,进一步降低计算量。
中图分类号:
[1] DHILLON A, VERMA G K. Convolutional neural network: a review of models, methodologies and applications to object detection[J]. Progress in Artificial Intelligence, 2020, 9(2):85-112. [2] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE transactions on neural networks and learning systems, 2019, 30(11):3212-3232. [3] LI Z, XIE W, ZHAGN L, et al. Toward efficient safety helmet detection based on YoloV5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-14. [4] FAROOQ M U, BHUTTO M A, KAZI A K. Real-time safety helmet detection using Yolov5 at construction sites[J]. Intelligent Automation & Soft Computing, 2023, 36(1):911-927. [5] SONG R, WANG Z. RBFPDet: an anchor-free helmet wearing detection method[J]. Applied Intelligence, 2023, 53(5): 5013-5028. [6] 张锦,屈佩琪,孙程,等. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用,2022,42(4):1292-1300. ZHANG Jin, QU Peiqi, SUN Cheng, et al. Helmet wearing detection algorithm based on improved YOLOv5[J]. Journal of Computer Applications, 2022, 42(4):1292-1300. [7] 田坤,李冠,赵卫东. 基于YOLO和极限学习机的驾驶员安全带检测模型研究[J].计算机应用与软件,2019,36(11):196-201. TIAN Kun, LI Guan, ZHAO Weidong. Research on driver seat belt detection model based on YOLO and extreme learning machine[J]. Computer Applications and Software, 2019, 36(11):196-201. [8] WAN L, LIU R, SUN L, et al. UAV swarmbased radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78:90-101. [9] PAOLETTI M E, HAUT J M, PEREIRA N S, et al. Ghostnet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10378-10393. [10] HUANG T Y, LEE M C, YANG C H, et al. YOLO-ORE:adeep learning-aided object recognition approach for radar systems[J]. IEEE Transactions on Vehicular Technology, 2022, 72:5715-5731. [11] FAN S, LIANG X, HUANG W, et al. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOv4 network[J]. Computers and Electronics in Agriculture, 2022, 193:106715. [12] GAI R, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J]. Neural Computing and Applications, 2023, 35(19):13895-13906. [13] WANG K, LIEW J H, ZOU Y, et al. Panet: few-shot image semantic segmentation with prototype alignment[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea:IEEE, 2019:9197-9206. [14] PATEL I, PATEL S. An optimized deep learning model for flower classification using NAS-FPN and faster R-CNN[J]. International Journal of Scientific & Technology Research, 2020, 9(3):5308-5318. [15] SYAZWANY N S, NAM J H, LEE S C. MM-BiFPN:multi-modality fusion network with Bi-FPN for MRI brain tumor segmentation[J]. IEEE Access, 2021, 9:160708-160720. [16] 谢椿辉,吴金明,徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J].计算机工程与应用, 2023, 58(9):1-11. XIE Chunhui, WU Jinming, XU Huaiyu. An improved small target detection algorithm for UAV image based on YOLOv5 [J]. Computer Engineering and Applications, 2023, 58(9):1-11. [17] SINDAGI V A, OZA P, YASARLA R, et al. Prior-based domain adaptive object detection for hazy and rainy conditions[C] //Computer Vision-ECCV 2020:16th European Conference. Glasgow, UK: Springer, 2020:763-780. [18] KIM J H, LIM N, PARK Y W, et al. Object detection and classification based on YOLO-V5 with improved maritime dataset[J]. Journal of Marine Science and Engineering, 2022, 10(3):377. [19] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: IEEE, 2022, 36(2):1792-1800. [20] YUN S, HAN D, OH S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019:6023-6032 [21] CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada, IEEE, 2023:12021-12031. [22] DONG X, ZHANG X, MA N, et al. Repvgg: Making vgg-style convnets great again[C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021:13733-13742. [23] WAN G, FANG H, WANG D, et al. Ceramic tile surface defect detection based on deep learning[J]. Ceramics International, 2022, 48(8):11085-11093. |
[1] | 葛一飞,艾孜尔古丽,陈德刚. 融合数据增强和知识迁移的汉维跨语言命名实体识别[J]. 山东大学学报 (工学版), 2024, 54(4): 67-75. |
[2] | 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121. |
[3] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
[4] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
[5] | 余明骏,刁红军,凌兴宏. 基于轨迹掩膜的在线多目标跟踪方法[J]. 山东大学学报 (工学版), 2023, 53(2): 61-69. |
[6] | 刘丁菠,刘学艳,于东然,杨博,李伟. 面向小样本目标检测任务的自适应特征重构算法[J]. 山东大学学报 (工学版), 2022, 52(6): 115-122. |
[7] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[8] | 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49. |
[9] | 万鹏. 基于F-PointNet的3D点云数据目标检测[J]. 山东大学学报 (工学版), 2019, 49(5): 98-104. |
[10] | 金翠,王洪元,陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报 (工学版), 2018, 48(6): 67-73. |
[11] | 惠开发,成科扬,詹永照. 基于改进ViBe算法的视频浓缩[J]. 山东大学学报(工学版), 2017, 47(3): 43-48. |
[12] | 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70. |
[13] | 杨健梅1,黄添强1,2*,江伟坚1. 基于人脸色温的拼接图像篡改检测[J]. 山东大学学报(工学版), 2013, 43(5): 24-30. |
[14] | 王秀芬,王汇源,王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1): 12-16. |
[15] | 乔伟1,王汇源1,2,吴晓娟1,刘鹏威1. 基于混沌动力学模型的群体目标检测与分类[J]. 山东大学学报(工学版), 2010, 40(2): 19-23. |
|