您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 106-114.doi: 10.6040/j.issn.1672-3961.0.2023.183

• 土木工程 • 上一篇    下一篇

基于MatDEM的松散地基喷浆加固浆液扩散规律

郭静1,赵振华2,马梦媛3,史长远3,姚占勇3,赵秋红2,姚凯3*   

  1. 1.济南城市建设集团有限公司, 山东 济南 250014;2.济南黄河路桥建设集团有限公司, 山东 济南 250013;3.山东大学齐鲁交通学院, 山东 济南 250002
  • 发布日期:2024-08-20
  • 作者简介:郭静(1987— ),男,山东临沂人,高级工程师,主要研究方向为城市道路与交通工程施工技术. E-mail: 15615616118@163.com. *通信作者简介:姚凯(1988— ),男,山东临沂人,教授,硕士生导师,博士,主要研究方向为地基处理. E-mail: yaokai@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金资助项目(ZR2021QE254);山东省优秀青年科学基金资助项目(海外)(2022HWYQ-016);教育部“春晖计划”合作科研资助项目(HZKY20220470)

Grout diffusion law for grouting reinforcement of loose foundation based on MatDEM

GUO Jing1, ZHAO Zhenhua2, MA Mengyuan3, SHI Changyuan3, YAO Zhanyong3, ZHAO Qiuhong2, YAO Kai3*   

  1. 1. Jinan Urban Construction Group Co., Ltd., Jinan 250014, Shandong, China;
    2. Jinan Yellow River Road and Bridge Construction Group Co., Ltd., Jinan 250013, Shandong, China;
    3. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Published:2024-08-20

摘要: 为分析松散地基喷浆加固过程中浆液扩散规律,借助MatDEM软件生成模拟土层,基于孔隙密度流原理实现喷浆过程可视化,生成土体颗粒位移场。从现有成桩直径预测公式出发,分析基于极限侵蚀距离的成桩直径预测公式的可靠性,基于模拟结果,通过分析喷浆压力、颗粒粒径等对修正参数的影响,对成桩直径预测公式进行修正,将现场试验中双管法旋喷喷浆施工参数及原位土体力学参数带入修正后成桩直径预测公式计算,与现场试验桩体开挖后实测直径进行对比,验证了修正公式的可靠性。

关键词: MatDEM, 高压喷浆, 孔隙密度流, 基础加固, 公式修正

中图分类号: 

  • TV543+1
[1] 胡瑞军. 高压喷浆技术在公路养护中的应用[J].运输经理世界,2022(15):116-118. HU Ruijun. Application of high-pressure grouting technology in highway maintenance[J]. Transport Manager World, 2022(15):116-118.
[2] LU Haifeng. Application of dynamic compaction and high-pressure grouting in special geological foundation treatment engineering[J]. Jiangxi Building Materials, 2023(2):236-238.
[3] 蒋明镜. 现代土力学研究的新视野:宏微观土力学[J]. 岩土工程学报,2019,41(2):195-254. JIANG Mingjing. A new perspective on modern soil mechanics research-macro and micro soil mechanics[J]. Journal of Geotechnical Engineering, 2019, 41(2):195-254.
[4] 邓开鸿. 高压旋喷桩的成桩机理和挤土效应研究[D]. 广州: 华南理工大学, 2012. DENG Kaihong. Research on the formation mechanism and squeezing effect of high pressure jet grouting pile[D]. Guangzhou: South China University of Technology, 2012.
[5] 周子龙,赵云龙,陈钊,等. 基于颗粒流方法的土体压密喷浆细观机理[J].中南大学学报(自然科学版),2017,48(2):465-472. ZHOU Zilong, ZHAO Yunlong, CHEN Zhao, et al. Microscopic mechanism of soil compaction spraying based on particle flow method[J]. Journal of Central South University(Natural Science Edition), 2017, 48(2): 465-472.
[6] 尤田,刘军,吴玉勤,等. 富水粉细砂地层喷浆三维颗粒流数值模拟分析[J]. 市政技术,2015,33(6):68-71. YOU Tian, LIU Jun, WU Yuqin, et al. Numerical simulation analysis of three-dimensional particle flow in spray grouting of water rich fine sand formations[J]. Municipal Technology, 2015, 33(6): 68-71.
[7] 胡焕校,王文进,刘猛. 复合膏浆渗透扩散的二维离散元模拟分析[J].水资源与水工程学报,2016,27(5):198-202. HU Huanxiao, WANG Wenjin, LIU Meng. Two-dimensional discrete element simulation analysis of permeation diffusion in composite paste[J]. Journal of Water Resources and Water Engineering, 2016, 27(5): 198-202.
[8] SUDIP Shakya, SHINYA Inazumi, SUPAKIJ Nontan-anandh. Potential of computer-aided engineering in the design of ground-improvement technologies[C] // Grouting 2022: Grouting and Ground Treatment, ASCE. Florida, USA: ASCE, 2003: 198-217.
[9] 国家能源局. 水电水利工程高压喷射灌浆技术规范:DL/T5200—2019 [ S]. 北京: 中国电力出版社, 2019. National Energy Administration. Technical specification for high pressure jet grouting in hydroelectric and hydraulic engineering: DL/T5200—2019 [S]. Beijing: China Electric Power Press, 2019.
[10] 彭岩岩,刘宇航,王天佐,等. 数值模拟实验在岩土工程中的应用与展望[J]. 绍兴文理学院学报(自然科学),2018,38(2):39-44. PENG Yanyan, LIU Yuhang, WANG Tianzuo, et al. Application and prospect of numerical simulation experiments in geotechnical engineering[J]. Journal of Shaoxing University of Arts and Sciences(Natural Science), 2018, 38(2):39-44.
[11] KLOSS C, GONIVA C, HAGER A, et al. Models, algorithms and validation for opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics, an International Journal, 2012, 12(2/3):140.
[12] NOROUZI H R, ZARGHAMI R, SOTUDEHGHARE-BAGH R, et al. Coupled CFD-DEM modeling: formulation, implementation and application to multiphase flows[M]. New Jersey, USA: Wiley-Blackwell, 2016.
[13] 戴轩,郑刚,程雪松,等. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟[J]. 岩石力学与工程学报,2019,38(2):396-408. DAI Xuan, ZHENG Gang, CHENG Xuesong, et al. Numerical simulation of formation migration caused by water and sand leakage in foundation pit engineering based on DEM-CFD method[J]. Journal of Rock Mechanics and Engineering, 2019, 38(2): 396-408.
[14] 卞跃威,张小龙,袁甲,等. 基于CFD-DEM方法的砂土注浆微观机理研究[J]. 现代隧道技术,2020,57(增刊1):528-534. BIAN Yuewei, ZHANG Xiaolong, YUAN Jia, et al. Research on the microscopic mechanism of sand spray based on CFD-DEM method in modern tunnel technology[J]. Modern Tunnel Technology, 2020, 57(Suppl.1):528-534.
[15] 郭照立,郑楚光. 格子BOLTZMANN方法的原理及应用[M]. 北京:科学出版社, 2009:201-216. GUO Zhaoli, ZHENG Chuguang. Principle and application of lattice BOLTZMANN method[M]. Beijing: Science Press, 2009:201-216.
[16] 浦海, 郭世儒, 刘德俊, 等. 基于LBM-DEM耦合方法的突水溃砂运移规律研究[J]. 煤炭科学技术, 2021,49(2):206-216. PU Hai, GUO Shiru, LIU Dejun, et al. Study on the transport law of sudden water and sand burst based on LBM-DEM coupling method[J]. Coal Science and Technology, 2021, 49(2):206-216.
[17] 金磊,曾亚武,程涛,等.隧道突泥破坏的耦合格子Boltzmann-离散元法模拟[J].岩土工程学报, 2021,43(6):1000-1009. JIN Lei, ZENG Yawu, CHENG Tao, et al. Coupled lattice Boltzmann discrete element method simulation of tunnel mud burst failure[J]. Journal of Geotechnical Engineering, 2021, 43(6):1000-1009.
[18] HAN Y, CUNDALL P A. LBM-DEM modeling of fluid-solid interaction in porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(10):1391-1407.
[19] ROBINSON M J, LUDING S, RAMAIOLI M. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation[J]. International Journal of Multiphase Flow, 2014, 59(2):121-134.
[20] SHEN S L, WANG Z F, YANG J, et al. Generalized approach for prediction of jet grout column diameter[J]. Journal of Geotechnical & Geoenvironmental Engin-eering, 2013, 139(12): 2060.
[21] FLORA A, MODONI G, LIRER S, et al. The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results[J]. Geotechnique, 2013, 63(11): 934-945.
[22] 刘春. 颗粒离散元法工程应用的三大问题探讨[J].岩石力学与工程学报, 2020, 39(6):1142-1152. LIU Chun. Exploration of three major issues in the engineering application of particle discrete element method[J]. Journal of Rock Mechanics and Engineering, 2020, 39(6): 1142-1152.
[23] 秦岩, 刘春, 张晓宇. 基于MatDEM的砂土侧限压缩试验离散元模拟研究[J]. 地质力学学报, 2018, 24(5):676-681. QIN Yan, LIU Chun, ZHANG Xiaoyu. Discrete element simulation study of sand lateral compression test based onMatDEM[J]. Journal of Geomechanics, 2018, 24(5): 676-681.
[24] 朱遥, 刘春, 刘辉, 等. 颗粒形态对砂土抗剪强度影响的试验和离散元数值模拟[J].工程地质学报, 2020, 28(3):490-499. ZHU Yao, LIU Chun, LIU Hui, et al. Experimental and discrete element numerical simulation of the effect of particle morphology on the shear strength of sandy soil[J]. Journal of Engineering Geology, 2020, 28(3): 490-499.
[25] 刘春. 地质与岩土工程矩阵离散元分析[M]. 北京:科学出版社, 2020:66-70. LIU Chun. Discrete element analysis of geological and geotechnical engineering matrices[M]. Beijing: Science Press, 2020:66-70.
[26] 刘春. 基于孔隙密度流的岩土体离散元流固耦合数值模拟方法: CN 110263362 A[P]. 2019-04-25.
[27] YUAN C, CHAREYRE B. A pore-scale method for hydromechanical coupling in deformable granularmedia[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318:1066-1079.
[28] VLEESHAUWE R P, MAERTEN S. Jet grouting:state of the art in Belgium[J]. Ground Improvement Geosystems, 2000(4):145-156.
[29] DABBAGH A A, GONZALEZ A S, PENA A S. Soil erosion by a continuous water jet[J].Soils Found,2002, 42(5):1-13.
[30] 王志丰, 沈水龙, 许烨霜. 基于圆形断面自由紊动射流理论的旋喷桩直径计算方法[J]. 岩土工程学报, 2012, 34(10):1957-1960. WANG Zhifeng, SHEN Shuilong, XU Yeshuang. A diameter calculation method for rotary jet piles based on the theory of free turbulent jet flow in circular cross-sections[J]. Journal of Geotechnical Engineering, 2012, 34(10):1957-1960.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154 -158 .
[2] 贾雁高,杜爱玲*,谷成燕, 杜爱琴,高宇. AB8大孔树脂吸附与硅胶层析法分离姜酚的对比研究[J]. 山东大学学报(工学版), 2010, 40(2): 121 -125 .
[3] 冯现大 李树忱 徐帮树. 海底隧道涌水量影响因素的数值模拟研究[J]. 山东大学学报(工学版), 2009, 39(4): 21 -24 .
[4] 尚芳 刘允刚 张承慧. 一类不确定非线性系统输出反馈扰动抑制[J]. 山东大学学报(工学版), 2010, 40(1): 19 -27 .
[5] 郝前华1, 何清华1,2*, 朱俊霖1, 李赛白1, 陈正1, 舒敏飞1. 配置蓄能器的电动叉车液压起升系统能耗试验研究[J]. 山东大学学报(工学版), 2011, 41(6): 80 -84 .
[6] 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79 -83 .
[7] 李万军 赵东标 牛敏. 笔式加工轨迹的B样条曲线逼近[J]. 山东大学学报(工学版), 2010, 40(1): 59 -62 .
[8] 彭丽芳 ,王仲顺,董文冉 . 市场均衡条件下供应链协作方式的对比[J]. 山东大学学报(工学版), 2006, 36(4): 65 -69 .
[9] 张强勇,向文 . 各向异性损伤锚固模型在大型公路滑坡治理工程中的应用[J]. 山东大学学报(工学版), 2006, 36(5): 82 -85 .
[10] 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1 -10 .