您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 138-146.doi: 10.6040/j.issn.1672-3961.0.2022.416

• 化学与环境 • 上一篇    下一篇

泰安大气VOCs的垂直分布特征及影响

葛衍珍1,杨敏敏2*,吴婉琪3,曹方方4,崔然5,李晓萌1,赵欣然1,王艳2,陈建民3   

  1. 1.泰安市生态环境保护控制中心, 山东 泰安 271000;2.山东大学环境科学与工程学院, 山东 青岛 266237;3.复旦大学环境科学与工程系, 上海 200438;4.山东省生态环境监测中心, 山东 济南 250101;5.泰安生态环境监测中心, 山东 泰安 271000
  • 出版日期:2023-06-20 发布日期:2023-07-07
  • 作者简介:葛衍珍(1984— ),男,山东泰安人,高级工程师,硕士研究生,主要研究方向为大气污染防治. E-mail:tahbj@163.com. *通信作者简介:杨敏敏(1988— ),女,山东东营人,博士后,博士研究生,主要研究方向为大气环境监测. E-mail:yangminmin@sdu.edu.cn
  • 基金资助:
    大气重污染成因与治理攻关项目(DQGG202123)

Vertical distribution characteristics and influences of VOCs in Taian atmosphere

GE Yanzhen1, YANG Minmin2*, WU Wanqi3, CAO Fangfang4, CUI Ran5, LI Xiaomeng1, ZHAO Xinran1, WANG Yan2, CHEN Jianmin3   

  1. 1.Taian Ecological Environment Protection and Control Center, Taian 271000, Shandong, China;
    2.School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China;
    3. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China;
    4. Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, Shandong, China;
    5. Taian Eco-environment Monitoring Center, Taian 271000, Shandong, China
  • Online:2023-06-20 Published:2023-07-07

摘要: 为了探究大气挥发性有机物(volatile organic compounds, VOCs)的垂直分布特征,利用GC-MS-FID连用仪,依托泰山进行泰安不同高度大气VOCs的研究,并分析臭氧生成的影响。研究结果显示,大津口(海拔330 m)总挥发性有机物(total VOCs,TVOCs)的体积分数最高,为72.6×10-9,臭氧生成潜势(ozone formation potential, OFP)也最高,源于本地机动车芳香烃的排放,与高山地形也有关;其次为农大(地面,TVOCs的体积分数为61.4×10-9)和玉皇顶(海拔1 534 m,TVOCs的体积分数为60.5×10-9);扇子崖(海拔500 m)TVOCs的体积分数最低,为41.2×10-9。不同站点大气中烷烃占比均最高,但VOCs的OFP优势物种不同。农大VOCs的OFP优势物种为烯烃,受交通和工业排放的影响较大;扇子崖和玉皇顶VOCs的OFP最低,其中扇子崖站点周围没有明显的排放源,且区域输送影响较低,玉皇顶主要受到高空大气输送的影响。揭示了大气VOCs的垂直分布差异,与排放源、区域输送和高山地形等都有关,也为山地城市大气VOCs和臭氧区域控制提供了数据支持和理论依据。

关键词: 挥发性有机物, 分布特征, 垂直分布, 高山地形, 臭氧生成潜势

中图分类号: 

  • X513
[1] RUSSELL A, MILFORD J, BERGIN M S, et al. Urban ozone control and atmospheric reactivity of organic gases[J]. Science, 1995, 269(5223): 491-495.
[2] SHAO Min, LU Sihua, LIU Ying, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2).
[3] MONKS P S, ARCHIBALD A T, COLETTE A, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[J]. Atmospheric Chemistry and Physics, 2015, 15(15): 8889-8973.
[4] HUANG Binbin, LEI Chao, WEI Chaohai, et al. Chlorinated volatile organic compounds(Cl-VOCs)in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014(71): 118-138.
[5] TAN Zhaofeng, LU Keding, JIANG Meiqing, et al. Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of the Total Environment, 2018(636): 775-786.
[6] WANG Xudong, YIN Shasha, ZHANG Ruiqin, et al. Assessment of summertime O3 formation and the O3-NOx-VOC sensitivity in Zhengzhou, China using an observation-based model[J]. Science of the Total Environment, 2022(813): 152449.
[7] JIN Xiaomeng, HOLLOWAY Tracey. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(14): 7229-7246.
[8] LI Meng, ZHANG Qiang, ZHENG Bo, et al. Persistent growth of anthropogenic non-methane volatile organic compound(NMVOC)emissions in China during 1990—2017: drivers, speciation and ozone formation potential[J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8897-8913.
[9] LIU Huan, LIU Shuai, XUE Boru, et al. Ground-level ozone pollution and its health impacts in China[J]. Atmospheric Environment, 2018(173): 223-230.
[10] YANG Yiru, LIU Xingang, QU Yu, et al. Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013[J]. Atmospheric Research, 2015(155): 192-203.
[11] CUI Lulu, WU Di, WANG Shuxiao, et al. Measurement report: ambient volatile organic compound(VOC)pollution in urban Beijing: characteristics, sources, and implications for pollution control[J]. Atmospheric Chemistry and Physics, 2022, 22(18): 11931-11944.
[12] LIU Yuehui, WANG Hongli, JING Shengao, et al. Characteristics and sources of volatile organic compounds(VOCs)in Shanghai during summer: implications of regional transport[J]. Atmospheric Environment, 2019(215): 116902.
[13] 肖龙, 王帅, 周颖, 等. 中国典型背景站夏季VOCs污染特征及来源解析[J]. 中国环境科学, 2021, 41(5): 2014-2027. XIAO Long, WANG Shuai, ZHOU Ying, et al. The characteristics and source apportionments of VOCs at typical background sites during summer in China[J]. China Environmental Science, 2021, 41(5): 2014-2027.
[14] 韩婷婷, 李颖若, 邱雨露, 等. 上甸子区域背景站VOCs污染特征及其对臭氧生成贡献[J]. 环境科学, 2020, 41(6): 2586-2595. HAN Tingting, LI Yingruo, QIU Yulu, et al. Characteristics of VOCs and their roles in ozone formation at a regional background site in Beijing, China[J]. Environmental Science, 2020, 41(6): 2586-2595.
[15] HAN Tingting, MA Zhiqiang, LI Yingruo, et al. Chemical characteristics and source apportionments of volatile organic compounds(VOCs)before and during the heating season at a regional background site in the North China Plain[J]. Atmospheric Research, 2021(262): 105778.
[16] WANG Hongli, JING Shengao, LOU Shengrong, et al. Volatile organic compounds(VOCs)source profiles of on-road vehicle emissions in China[J]. Science of the Total Environment, 2017(607/608): 253-261.
[17] WANG Sihang, YUAN Bin, WU Caihong, et al. Oxygenated volatile organic compounds(VOCs)as significant but varied contributors to VOC emissions from vehicles[J]. Atmospheric Chemistry and Physics, 2022, 22(14): 9703-9720.
[18] 谭冰,王铁宇,庞博,等. 农药企业场地空气中挥发性有机物污染特征及健康风险[J].环境科学, 2013, 34(12):4577-4584. TAN Bing, WANG Tieyu, PANG Bo, et al. Pollution characteristics and health risk assessment of atmospheric volatile organic compounds(VOCs)in pesticide factory[J]. Environmental Science, 2013, 34(12): 4577-4584.
[19] SHEN Longjiao, XIANG Ping, LIANG Shengwen, et al. Sources profiles of volatile organic compounds(VOCs)measured in a typical industrial process in Wuhan, Central China[J]. Atmosphere, 2018, 9(8): 297.
[20] 郭文凯, 刘镇, 刘文博, 等. 兰州生物质燃烧 VOCs 排放特征及其大气环境影响[J]. 中国环境科学, 2019, 39(1): 40-49. GUO Wenkai, LIU Zhen, LIU Wenbo, et al. The characteristics of VOCs emission from biomass burning and its influence on atmospheric environment in Lanzhou City[J]. China Environmental Science, 2019, 39(1): 40-49.
[21] ZHANG Kun, XIU Guangli, ZHOU Lei, et al. Vertical distribution of volatile organic compounds within the lower troposphere in late spring of Shanghai[J]. Atmospheric Environment, 2018(186): 150-157.
[22] SUN Jie, WANG Yuesi, WU Fangkun, et al. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods[J]. Environmental Pollution, 2018(236): 907-915.
[23] MAO Ting, WANG Yuesi, JIANG Jie, et al. The vertical distributions of VOCs in the atmosphere of Beijing in autumn[J]. Science of the Total Environment, 2008, 390(1): 97-108.
[24] MAO Ting, WANG Yuesi, XU Honghui, et al. A study of the atmospheric VOCs of Mount Tai in June 2006[J]. Atmospheric Environment, 2009, 43(15): 2503-2508.
[25] 杨敏敏. 大气挥发性氯代烃的污染特征及输送影响研究[D]. 济南:山东大学, 2019. YANG Minmin. Characteristics and regional transport of atmospheric volatile chlorinated hydrocarbons[D]. Jinan: Shandong University, 2019.
[26] SUTHAWAREE J, KATO S, OKUZAWA K, et al. Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006(MTX2006): observation of regional background and impact of biomass burning[J]. Atmospheric Chemistry and Physics, 2010, 10(3): 1269-1285.
[27] YANG Fengchun, WANG Yan, LI Hongli, et al. Influence of cloud/fog on atmospheric VOCs in the free troposphere: a case study at Mount Tai in Eastern China[J]. Aerosol and Air Quality Research, 2017, 17(10): 2401-2412.
[28] CARTER William. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[J]. California Air Resources Board Contract, 2009, 339: 2009.
[29] GUENTHER Alex, HEWITT Nicholas, ERICKSON David, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D5): 8873-8892.
[30] WANG Ming, QIN Wei, CHEN Wentai, et al. Seasonal variability of VOCs in Nanjing, Yangtze River delta: implications for emission sources and photochemistry[J]. Atmospheric Environment, 2020(223): 117254.
[31] LÜ Daqi, LU Sihua, TAN Xin, et al. Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds(VOCs)emitted from a local petroleum refinery in Shandong[J]. Environmental Pollution, 2021(274): 116589.
[32] URIA TELLAETXE Iratxe, NAVAZO Marino, DE BLAS Maite, et al. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds[J]. Atmospheric Environment, 2016(131): 279-288.
[33] RUECKER A, WEIGOLD P, BEHRENS S, et al. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia[J]. Environmental Science & Technology, 2014, 48(16): 9170-9178.
[34] FRISCHE Matthias, GAROFALO Kristin, HANSTEEN Thor, et al. Fluxes and origin of halogenated organic trace gases from Momotombo volcano(Nicaragua)[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(5): 1-14.
[35] HUTCHINGS J G, HENEGHAN S C, HUDSON D I, et al. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds[J]. Nature, 1996, 384(6607): 341-343.
[36] 盛涛, 高宗江, 高松, 等. 上海市专项化学品制造行业VOCs排放特征及臭氧生成潜势研究[J]. 环境科学研究, 2019, 32(5): 830-838. SHENG Tao, GAO Zongjiang, GAO Song, et al. Emission characteristics and ozone formation potential of VOCs of special chemical manufacturing industry in Shanghai City[J]. Research of Environmental Sciences, 2019, 32(5): 830-838.
[37] SHARKEY D T, WIBERLEY E A, DONOHUE R A, Isoprene emission from plants: why and how[J]. Annals of Botany, 2007, 101(1): 5-18.
[38] MONOD Anne, SIVE Barkley, AVINO Pasquale, et al. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene[J]. Atmospheric Environment, 2001, 35(1): 135-149.
[39] HE Qiusheng, YAN Yulong, LI Hongyan, et al. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China[J]. Atmospheric Environment, 2015(115): 153-162.
[40] BARLETTA Barbara, MEINARDI Simone, ROWLAND Sherwood, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment, 2005, 39(32): 5979-5990.
[41] TAN Jihua, GUO Songjun, MA Yongliang, et al. Non-methane hydrocarbons and their ozone formation potentials in Foshan, China[J]. Aerosol and Air Quality Research, 2012, 12(3): 387-398.
[42] BARLETTA Barbara, MEINARDI Simone, SIMPSON Isobel, et al. Ambient mixing ratios of nonmethane hydrocarbons(NMHCs)in two major urban centers of the Pearl River Delta(PRD)region: Guangzhou and Dongguan[J]. Atmospheric Environment, 2008, 42(18): 4393-4408.
[1] 胡卉, 汤宁业, 王司宇, 王海森. 工程纳米材料颗粒物气溶胶制备方法研究进展[J]. 山东大学学报 (工学版), 2022, 52(4): 1-11.
[2] 段升飞,杨凌霄,李静姝,高洪亮,张婉,张雄飞,齐安安,王鹏程,王浥铭,庹雄. 农村地区不同炉具和燃料排放PM1.0中多环芳烃的排放特征[J]. 山东大学学报 (工学版), 2021, 51(1): 120-127.
[3] 黄琦,杨凌霄,李岩岩,姜盼,高颖,王文兴. 济南城区大气PM2.5、PM1.0的污染特征及大气传输[J]. 山东大学学报 (工学版), 2020, 50(1): 95-100, 108.
[4] 杨雨蒙,杨凌霄,张俊美,王文兴. 济南市冬季灰霾日PM1.0和PM1.0—2.5污染特征[J]. 山东大学学报(工学版), 2017, 47(2): 111-116.
[5] 张婉,杨凌霄,张雄飞,严伟达,王新锋,文亮,赵彤,王文兴. 山东农村和背景地区雾霾天与清洁天气溶胶光学特性[J]. 山东大学学报 (工学版), 2020, 50(4): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .