山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 142-148.doi: 10.6040/j.issn.1672-3961.0.2022.241
• 其他 • 上一篇
张斌1,李官鹏1,程鹏1,李元鲁2,辛公明2,季万祥3*
ZHANG Bin1, LI Guanpeng1, CHENG Peng1, LI Yuanlu2, XIN Gongming2, JI Wanxiang3*
摘要: 采用计算流体力学方法,分析磨煤机前冷热一次风道的流动特性,包括风门开度对流场的影响、测量截面的均匀程度、常规均流措施的实际效果。针对冷热风混合后的速度不均问题和常规均流措施所造成的压降过大问题,提出一种对开风门的均流设计。结果表明:常规均流孔板虽然能够提升速度均匀度,但是部分开度时压降普遍超过4 kPa。对开式风门既有导流能力也有整流能力,部分开度时其速度相对标准差普遍小于0.4,压降普遍小于1.5 kPa,较常规均流孔板有明显优势。该结果可为电厂磨煤机前一次风道的均流设计提供参考。
中图分类号:
[1] YAN Qingyun, LI You, ZHU Yuanhong, et al. CFD-Based optimization of hot primary-air pipe networks in power plant milling systems[J]. Fdmp-fluid Dynamics & Materials Processing, 2020, 16(3): 623-636. [2] 王羽,韦红旗,沈萌萌. 火电厂中速磨煤机一次风道流场优化[J].发电设备,2020,34(1):14-19. WANG Yu, WEI Hongqi, SHEN Mengmeng. Flow field optimization of a primary air duct for the medium-speed coal mill of thermal power plant[J]. Power Equipment, 2020, 34(1):14-19. [3] 王巍,王博. 火电厂一次风量测量不准问题的解决方案[J]. 电力技术,2009(2):54-58. WANG Wei, WANG Bo. Solution to the problem of inaccurate primary air volume measurement in thermal power plants[J]. Electric Power Technology, 2009(2):54-58. [4] 王旭波,李广红,王巍. 火电厂直吹式煤粉炉磨煤机一次风量测量及自动控制的优化[J]. 陕西理工学院学报(自然科学版),2013,29(1):5-11. WANG Xubo, LI Guanghong, WANG Wei. Thermal power plant directly firing pulverized coal boiler coal mill once wind measurement and automatic control optimization[J]. Journal of Shaanxi Shaanxi University of Technology(Natural Science Edution), 2013, 29(1):5-11. [5] 何曙勇,李志坚. 磨煤机一次风量测量装置改造及应用[J]. 浙江电力,2010,29(10):43-46. HE Shuyong, LI Zhijian. Improvement andapplication of primary air flow meter[J]. Zhejiang Electric Power, 2010, 29(10):43-46. [6] 顾志恩,林光锐,朱宝刚. 600 MW锅炉磨煤机入口一次风流量测量装置改造[J]. 电站系统工程, 2016, 32(5): 75-76. GU Zhien, LIN Guangrui, ZHU Baogang. Retrofit of PA flow measuring device at 600MW boiler coal mill inlet[J]. Power System Engineering, 2016, 32(5): 75-76. [7] 兰斌. 新型磨煤机一次风量测量装置的应用[J]. 华电技术, 2018, 40(3): 57-58. LAN Bin. Application of a new primary air volume measuring device for coal mill[J]. Huadian Technology, 2018, 40(3): 57-58. [8] 陈海生. 采用FDB/SS型在线风量测量装置提高锅炉一、二次风流量测量的可靠性[J]. 自动化与仪器仪表, 2014(10): 140-142. CHEN Haisheng. Using FDB/SS-line air flow measurement devices to improve boiler reliability secondary air flow measurement[J]. Automation & Instrumentation, 2014(10): 140-142. [9] 杨耀权,张新胜. 基于自适应变异SAPSO-LSSVM的磨煤机一次风量预测[J].自动化仪表,2016,37(7):88-92. YANG Yaoquan, ZHANG Xinsheng. Primary air flow prediction based on adaptive mutation SAPSO-LSSVM for coal mill[J]. Process Automation Instrumentation, 2016, 37(7): 88-92. [10] 杨耀权,刘建兵. 基于混合建模的磨煤机一次风量预测算法研究[J]. 仪器仪表学报,2016,37(8):1913-1919. YANG Yaoquan, LIU Jianbing. Research on the algorithm of the coal mill primary air flow prediction based on the hybrid modelling[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1913-1919. [11] 杨耀权,张新胜. LSSVM动态软测量模型在磨煤机一次风量预测方面的应用[J]. 动力工程学报,2016,36(3):207-212. YANG Yaoquan, ZHANG Xinsheng. Soft-sensing of primary air flow in a coal mill based on LSSVM[J]. Journal of Chinese Society of Power Engineering, 2016, 36(3):207-212. [12] ODGAARD A J, WANG Y. Sediment management with submerged vanes, I: theory[J]. Journal of Hydraulic Engineering, ASCE, 1991, 117(3): 267-283. [13] ODGAARD A J, WANG Y. Sediment management with submerged vanes: Ⅱ:applications[J]. Journal of Hydraulic Engineering, ASCE, 1991, 117(3): 284-302. [14] VOISIN A, TOWNSEND R D. Model testing of submerged vanes in strongly curved narrow channel bends[J]. Canadian journal of civil engineering, 2002, 29: 37-49. [15] 常毅君,王晓冰,张波,等. 磨煤机入口一次风量测量数值模拟研究[J]. 热力发电,2012,41(12):48-50. CHANG Yijun, WANG Xiaobing, ZHANG Bo, et al. Numerical simulation of primary air measurement at the inlet of coal mill[J]. Thermal Power Generation, 2012, 41(12):48-50. [16] 张广才,高学伟. 中速磨煤机入口一次风量数值模拟[J]. 沈阳工程学院学报(自然科学版),2011,7(2):127-130. ZHANG Guangcai, GAO Xuewei. Numerical simulation of primary air flow in medium speed mill inlet[J]. Journal of Shenyang Institute of Engineering(Natural Science), 2011,7(2):127-130. [17] 梅振锋,陈敏,徐妙锋,等. 中速磨煤机前圆形一次风道流场模拟及优化设计[J]. 热力发电,2016,45(11):99-105. MEI Zhenfeng, CHEN Min, XU Miaofeng, et al. Flow field in the upstream circular primary air duct of medium speed mills: numerical simulation and optimization design[J]. Thermal Power Generation, 2016, 45(11):99-105. [18] 王周君,黎星华,唐立军,等. 磨煤机入口一次风混流及均流装置的设计[J]. 电力科学与工程,2019,35(4):69-73. WHANG Zhoujun, LI Xinghua, TANG Lijun, et al. Design of primary air flow mixing and equalizing device for coal mill inlet[J]. Electric Power Science and Engineering, 2019, 35(4):69-73. [19] 徐亚峰,彭小敏,胡亮,等. 1000 MW级燃煤机组磨煤机入口圆形一次风道冷热风均流改造技术[J]. 热能动力工程,2019,34(3):103-108. XU Yafeng, PENG Xiaomin, HU Liang, et al. Transformation technology for the uniform flow of cold and hot primary air in round ducts of pulverizer in 1000 MW coal-fired power plant[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(3):103-108. [20] 刘泽勤,苏云,郭宪民. 风机盘管来流场均匀化数值模拟[J]. 流体机械,2013,41(4):54-57. LIU Zeqin, SU Yun, GUO Xianmin. Numerical simulation of uniformization of the head-on flow field of the fan coil unit[J]. Fluid Machinery, 2013, 41(4):54-57. [21] 彭小敏,胡亮,徐亚峰,等. 大型燃煤电厂中速磨煤机入口圆形一次风道均流技术研究[J]. 中国科技论文,2017,12(11):1309-1314. PENG Xiaomin, HU Liang, XU Yafeng, et al. Study on flow sharing technique of circular primary air duct at inlet of medium speed coal pulverizer in large coal-fired power plant[J]. China Sciencepaper, 2017, 12(11):1309-1314. [22] SHIH T H, LIOU W W, SHABBIR A, et al. A new eddy viscosity model for high reynolds number turbulent flows: model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238. [23] 李勇. T型管内冷热流体搅混过程实验研究[D].济南:山东大学, 2020. LI Yong. Experimental study on thermal mixing characteristics of cold and hot flows in the T-junction[D]. Jinan: Shandong University, 2020. [24] 李坦,靳世平,黄素逸,等. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电,2013,42(11):60-63. LI Tan, JIN Shiping, HUANG Suyi, et al. Evaluation indices of flow velocity distribution uniformity: comparison and application[J]. Thermal Power Generation, 2013, 42(11):60-63. |
[1] | 韦修喜,陶道,黄华娟. 改进果蝇算法优化BP神经网络预测汽油辛烷值[J]. 山东大学学报 (工学版), 2023, 53(5): 20-28. |
[2] | 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148. |
[3] | 李浩源,于景明,张桂林,张斌. 基于智能算法的光纤预制棒芯层制备工艺参数优化[J]. 山东大学学报 (工学版), 2023, 53(4): 149-156. |
[4] | 宋修广,郭鑫铭,闫方,李国强,田源. 公路应急救援车辆智能调度技术[J]. 山东大学学报 (工学版), 2023, 53(4): 1-17. |
[5] | 刘庆鑫,齐琦,贾鹤鸣,李霓. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报 (工学版), 2023, 53(4): 93-103. |
[6] | 李连祥,李红波,韩刚,郭龙德,赵仕磊. 济南非饱和土基坑支护设计[J]. 山东大学学报 (工学版), 2023, 53(3): 41-49. |
[7] | 刘祥坤,李树忱,王修伟,田野,许京伟,魏清武,赵永曦. 基于CFD的铣槽机泥浆运移规律数值模拟及施工优化[J]. 山东大学学报 (工学版), 2023, 53(3): 69-77. |
[8] | 黄华娟,程前,韦修喜,于楚楚. 融合Jaya高斯变异的自适应乌鸦搜索算法[J]. 山东大学学报 (工学版), 2023, 53(2): 11-22. |
[9] | 裴佑楠,韩学山,张玉敏,叶平峰,李竞锐. 一种计及概率风险的备用优化方法[J]. 山东大学学报 (工学版), 2023, 53(2): 143-154. |
[10] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
[11] | 王雪雅,张一鸣,孙子正,柯福阳. 自适应裂面优化法尾矿坝稳定性研究[J]. 山东大学学报 (工学版), 2023, 53(1): 100-105. |
[12] | 于少伟,秦瑞伶,关京京,吉灿,封硕,姜锐,刘英宁. 利用通行能力余量的智能网联车队生态驾驶模型[J]. 山东大学学报 (工学版), 2022, 52(6): 23-29. |
[13] | 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101. |
[14] | 杨思,王艳,赵斌成,韩学山,刘冬,孙东磊. 含分布式电源的配电网三阶段协同优化调度[J]. 山东大学学报 (工学版), 2022, 52(5): 55-69. |
[15] | 董璐璐,宋金涛,魏伟波,潘振宽. 多相图像分割变分模型的标签函数提升方法[J]. 山东大学学报 (工学版), 2022, 52(4): 54-68. |
|