您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (2): 31-40.doi: 10.6040/j.issn.1672-3961.0.2021.279

• • 上一篇    

基于TOPSIS的异质网络影响力最大化

郭茂林1,包崇明2,周丽华1,丁涛3,孔兵1*   

  1. 1.云南大学信息学院, 云南 昆明 650504;2.云南大学软件学院, 云南 昆明 650504;3.云南省科学技术院, 云南 昆明 650228
  • 发布日期:2022-04-20
  • 作者简介:郭茂林(1996— ),男,四川自贡人,硕士研究生,主要研究方向为社会网络分析与机器学习. E-mail:guomaolin@mail.ynu.edu.cn. *通信作者简介:孔兵(1968— ),男,云南昆明人,副教授,博士,主要研究方向为社会网络分析与机器学习. E-mail:kongbing@ynu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61762090,62062066);云南省重点研发计划(2018IA054);云南省教育厅科学研究基金项目(2019J0005)

Influence maximization of heterogeneous networks based on TOPSIS

GUO Maolin1, BAO Chongming2, ZHOU Lihua1, DING Tao3, KONG Bing1*   

  1. 1. School of Information, Yunnan University, Kunming 650504, Yunnan, China;
    2. School of Software, Yunnan University, Kunming 650504, Yunnan, China;
    3. Yunnan Provincial Academy of Science and Technology, Kunming 650228, Yunnan, China
  • Published:2022-04-20

摘要: 为了解决异质网络影响力最大化问题,提出一种通过计算不同元路径的信息熵将异质网络影响力最大化建模为一个多标准决策问题,再使用逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)进行求解。为了评估异质网络中的信息扩散,使用线性阈值模型来进行种子集的扩散数量验证。在3个真实世界网络上进行试验,试验结果表明所提算法的扩散数量高于其他算法结果几十到几百个节点不等,运行时间也是线性时常,表明所提算法是确实有效。

关键词: 异质信息网络, 信息扩散, 影响力最大化, 信息熵, 元路径

中图分类号: 

  • TP391
[1] CHEUNG Man Yee, LUO Chuan, CHEN Huaping. Credibility of electronic word-of-mouth: informational and normativedeterminantsof on-line consumer recommendations[J]. International Journal of Electronic Commerce, 2009, 13(4):9-38.
[2] CHEN W, WANG C, WANG Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks[C] //Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA: ACM Press, 2010: 25-28.
[3] PIERRE Fraigniaud, EMANUELE Natale. Noisy rumor spreading and plurality consensus[J]. Distributed Computing, 2019, 32(4): 257-276.
[4] ANDREW J Flanagin. Online social influence and the convergence of mass and interpersonal communication[J]. Human Communication Research, 2017, 43(4): 4.
[5] PENG Sancheng, YANG Aimin, CAO Lihong, et al. Social influence modeling using information theory in mobile social networks[J]. Information Sciences, 2016, 379: 146-159.
[6] MO Hongming, DENG Yong. Identifying node importance based on evidence theory in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 529: 121538.
[7] YANG Hanxin, WANG Wenxu, LAI Yingcheng, et al. Control of epidemic spreading on complex networks by local traffic dynamics[J]. Physical Review E: Statistical, nonlinear and soft matter physics, 2011, 84(4): 045101.
[8] FEI Liguo, ZHANG Qi, DENG Yong. Identifying influential nodes in complex networks based on the inverse-square law[J]. Physica A: Statistical Mechanics and its Applications, 2018, 512: 1044-1059.
[9] HUANG Dawen, YU Zuguo. Dynamic-sensitive centrality of nodes in temporal networks[J]. Scientific Reports, 2017, 7: 41454.
[10] MOLAEI S, FARAHBAKHSH R, SALEHI M, et al. Identifying influential nodes in heterogeneous networks[J]. Expert Systems with Applications, 2020, 160: 113580.
[11] WANG Zhixiao, ZHAO Ya, XI Jingke, et al. Fast ranking influential nodes in complex networks using a k-shell iteration factor[J]. Physica A: Statistical Mechanics and its Applications, 2016, 461: 171-181.
[12] ZAREIE Ahmad, SHEIKHAHMADI Amir. A hierarchical approach for influential node ranking in complex social networks[J]. Expert Systems with Applications, 2017, 93: 200-211.
[13] ZAREIE Ahmad, SHEIKHAHMADI Amir, FATEMI Adel. Influential nodes ranking in complex networks: an entropy-based approach[J]. Chaos Solitons and Fractals, 2017, 104: 485-494.
[14] ZAREIE Ahmad, SHEIKHAHMADI Amir, KHAMFOROOSH K. Influence maximization in social networks based on TOPSIS[J]. Expert Systems With Appli-cations, 2018, 108:96-107.
[15] HWANG C L, YOON K. Multiple attribute decision making[J]. Lecture Notes in Economics and Mathe-matical Systems, 1981, 404(4):287-288.
[16] DELGARM N, SAJADI B, DELGARM S, et al. Multi-objective optimization of building energy performance and indoor thermal comfort: a new method using artificial bee colony(ABC)[J]. Building Energy Efficiency, 2016, 11: 82.
[17] HU J, DU Y, MO H, et al. A modified weighted TOPSIS to identify influential nodes in complex networks[J]. Physica A: Statistical Mechanics andits Applications, 2016, 444: 73-85.
[18] JI H, SHI C, BAI W. Attention based meta path fusion for heterogeneous information network embedding[C] //Pacific Rim International Conference on Artificial Intelligence.Switzerland, Cham:PRICAI Press, 2018: 348-360.
[19] LIU Lu, TANG Jie, HAN Jiawei, et al. Learning influence from heterogeneous social networks[J]. Data Mining and Knowledge Discovery, 2012, 25(3): 511-544.
[20] MOLAEI Soheila, FARAHBAKHSH Reza, SALEHI Mostafa, et al. Identifying influential nodes in heterogeneous networks[J]. Expert Systems with Applications, 2020, 160: 113580.
[21] SHI C, HU B, ZHAO X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge & Data Engineering, 2019, 31(2): 357-370.
[22] SHANNON C E. A mathematical theory of comm-unication[J]. Bell Systems Technical Journal, 1948, 27(4): 623-656.
[23] ASSARI Ali, MAHESH T M, ASSARI Erfan. Role of public participation in sustainability of historical city: usage of TOPSIS method[J]. Indian Journal of Science and Technology, 2012, 5(3): 2289-2294.
[24] SUN Y, HAN J, YAN X, et al. PathSim: meta path-based Top-K similarity search in heterogeneous information networks[C] //Proceedings of the 37th International Conference on Very Large Data Bases. Seattle, USA:VLDB Press, 2011, 4(11): 992-1003.
[25] SUN Y, HAN J, GAO J, et al. TopicModel: information network-integrated topic modeling[C] //Ninth IEEE International Conference on Data Mining. Florida, USA:IEEE Press, 2009: 493-502.
[26] DAVIS A, GARDNER B B, GARDNER M R, et al. Deep south: asocial anthropological study of caste and class[J]. American Journal of Sociology, 1941, 2(3): 117-118.
[27] KEMPE D. Maximizing the spread of influence through a social network[C] //Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA:ACM Press, 2003: 137-146.
[28] BRIN Sergey, PAGE Lawrence. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1): 107-117.
[29] LESKOVEC Jure, KRAUSE Andreas, GUESTRIN Carlos, et al. Cost-effective outbreak detection in networks[C] //Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: ACM Press, 2007: 420-429.
[30] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6: 888-893.
[1] 覃俊,李蔚栋,易金莉,刘晶,马懋德. 基于双重启发式信息求解影响最大化问题的蚁群算法[J]. 山东大学学报 (工学版), 2020, 50(3): 45-50.
[2] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[3] 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62.
[4] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[5] 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50.
[6] 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14.
[7] 潘盼1,王熙照2,翟俊海2. 基于有序决策树的改进归纳算法[J]. 山东大学学报(工学版), 2014, 44(1): 41-44.
[8] 李慧1,2,胡云1,3,李存华1. 基于粗糙集理论的瓦斯灾害信息特征提取技术[J]. 山东大学学报(工学版), 2012, 42(5): 91-95.
[9] 郭剑毅1,2,雷春雅1,余正涛1,2,苏磊1,2,赵君1,田维1. 基于信息熵的半监督领域实体关系抽取研究[J]. 山东大学学报(工学版), 2011, 41(4): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!