您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 34-46.doi: 10.6040/j.issn.1672-3961.0.2020.234

• • 上一篇    

主动三支聚类下的全局和局部多视角多标签学习算法

朱昌明,岳闻,王盼红,沈震宇,周日贵   

  1. 上海海事大学信息工程学院, 上海 201306
  • 发布日期:2021-04-16
  • 作者简介:朱昌明(1988— ),男,上海南汇人,副教授,博士,主要研究方向为图像处理和多视角学习.E-mail:cmzhu@shmtu.edu.cn
  • 基金资助:
    中国博士后科学基金(2019M651576);晨光计划(18CG54);国家自然科学基金资助项目(61602296)

Global and local multi-view multi-label learning with active three-way clustering

ZHU Changming, YUE Wen, WANG Panhong, SHEN Zhenyu, ZHOU Rigui   

  1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Published:2021-04-16

摘要: 为了考虑样本与簇之间不确定的归属关系并衍生全局和局部多视角多标签学习的应用范围,提岀一个主动三支聚类下的全局和局部多视角多标签学习算法(global and local multi-view multi-label learning machine with active three-way clustering, GLMVML-ATC)。通过使用主动三支聚类,样本是否归属于一个簇将取决于不确定样本属于核心区域的概率。这使得局部标签关联更可信,能够增强多视角多标签学习机的性能,并加速他们的发展。试验表明,GLMVML-ATC使得分类性能至少提升3%,增加的训练时间不超过7%,更优于典型的多视角、多标签学习机。

关键词: 三支聚类, 多视角, 多标签, 标签关联, 全局和局部

Abstract: In order to consider the uncertain belongingness relationship between instances and clusters and then extend the application scopes of global and local multi-view multi-label learning, an algorithm of global and local multi-view multi-label learning machine with active three-way clustering(GLMVML-ATC)was proposed. With the usage of active three-way clustering strategy, the belongingness of instances to a cluster depended on the probabilities of uncertain instances belonging to core regions. This made local label correlations more authentic, which enhanced the performances of multi-view multi-label learning machines further and accelerated their development. Experimental results validated that GLMVML-ATC improved the classification performances with 3% at least, while the added training time less than 7%. It was superior to the classical multi-view learning machines and multi-label learning machines.

Key words: three-way clustering, multi-view, multi-label, label correlation, global and local

中图分类号: 

  • TP391
[1] FU Y J, LIU J M, LI X L, et al. Service usage analysis in mobile messaging apps: a multi-label multi-view perspective[C] //IEEE International Conference on Data Mining. Barcelona, Spain: IEEE Xplore, 2016: 877-882.
[2] YIN Q Y, ZHANG J G, WU S, et al. Multi-view clustering via joint feature selection and partially constrained cluster label learning[J]. Pattern Recognition, 2019, 93(19):380-391.
[3] WANG G X, ZHANG C Q, ZHU P F, et al. Semisupervised multi-view multi-label classification based on nonnegative matrix factorization[C] //International Conference on Artificial Neural Networks and Machine Learning. Alghero, Italy: Springer, 2017: 340-348.
[4] MAEDA K, TAKAHASHI S, OGAWA T, et al. Multi-feature fusion based on supervised multi-view multilabel canonical correlation projection[C] //IEEE International Conference on Acoustics, Speech and Signal Processing. Brughton, UK: IEEE Xplore, 2019: 3936-3940.
[5] ZOU F H, LIU Y, WANG H, et al. Multi-view multi-label learn-ing for image annotation [J]. Multimedia Tools and Applications, 2016, 75(20): 12627-12644.
[6] YAO Y Y. An outline of a theory of three-way decisions[C] //Proceed-ings of the 8th International Conference on Rough Sets and Current Trends in Computing. Heidelberg, Germany: Springer, 2012: 1-17.
[7] YAO Y Y. Three-way decisions and cognitive computing[J]. Cognitive Computation, 2016, 8(4):543-554.
[8] YU H, JIAO P, YAO Y Y, et al. Detecting and refining overlapping regions in complex networks with threeway decision[J]. Information Sciences, 2016, 373(23):21-41.
[9] YU H. A framework of three-way cluster analysis[C] //Proceedings of the International Joint Conference on Rough Sets. Olsztyn, Poland: Springer, 2017: 300-312.
[10] ZHU C M, MIAO D Q, WANG Z, et al. Global and local multi-view multi-label learning [J]. Neurocomputing, 2020, 371(32): 67-77.
[11] YU H, WANG X C, WANG G Y, et al. An active three-way clustering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507(27): 823-839.
[12] BASU S, BANERJEE A, MOONEY R. Active semi-supervision for pairwise constrained clustering[C] //Proceedings of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA: SIAM, 2004: 333-344.
[13] MALLAPRAGADA P, JIN R, JAIN A. Active query selection for semi-supervised clustering[C] //Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE Explore, 2008: 1-4.
[14] LUO D J, DING C, HUANG H, et al. Non-negative Laplacian embedding[C] //Proceedings of the 9th IEEE International Conference on Data Mining(ICDM). Miami, USA: IEEE Explore, 2009: 337-346.
[15] ZHANG C Q, YU Z W, HU Q H, et al. Latent semantic aware multi-view multi-label classification[C] //32th AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI Press, 2018: 4414-4421.
[16] ZHANG C Q, FU H Z, HU Q H, et al. Generalized latent multi-view subspace clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86-99.
[17] ZHANG J, LI C D, CAO D L, et al. Multi-label learning with label-specific features by resolving label correlations[J]. Knowledge-Based Systems, 2018, 159:148-157.
[18] HUANG J, QIN F, ZHENG X, et al. Improving multi-label classification with missing labels by learning label-specific feature[J]. Information Sciences, 2019, 492(26):124-146.
[19] CHUA T S, TANG J H, HONG R C, et al. Nus-wide: a real-world web image database from national university of Singapor[C] //Proceedings of the ACM International Conference on Image and Video Retrieval. Santorini Island, Greece: ACM, 2009: 368-376.
[20] HE Z Y, CHEN C, BU J J, et al. Multi-view based multi-label propagation for image annotation[J]. Neurocomputing, 2015, 168(27):853-860.
[21] SUN S L, ZHANG Q J. Multiple-view Multiple-learner Semi-supervised Learning[J]. Neural Processing Letters, 2011, 34:229-240.
[22] WU F, JING X Y, YOU X G, et al. Multi-view low-rank dictionary learning for image classification[J]. Pattern Recognition, 2016, 50(16):143-154.
[23] WENG W, LIN Y J, WU S X, et al. Multilabel learning based on label-specific features and local pairwise label correlation[J]. Neurocomputing, 2018, 273(30):385-394.
[24] KUMAR V, PUJARI A, PADMANSBHAN V, et al. Multi-label classification using hierarchical embedding[J]. Expert Systems with Applications, 2018, 91:263-269.
[25] ZHU Y, KWOK J, ZHOU Z H. Multi-Label Learning with Global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 6(30):1081-1094.
[26] QIAN B Y, WANG X, YE J P, et al. A reconstruction error based framework for multi-label and multi-view learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3):594-607.
[1] 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!