山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 88-95.doi: 10.6040/j.issn.1672-3961.0.2018.342
Fang GUO1(),Lei CHEN1,2,3,Ziwen YANG1
摘要:
为克服长短时记忆网络(long short-term memory, LSTM)计算成本相当大的弊端,提出基于最小门控单元(minimal gated unit, MGU)的大规模IP骨干网络实时流量预测方法。试验结果表明,与基于LSTM的流量预测方法相比,该方法以较少的模型训练时间获得了相当甚至略优的流量预测性能,在流量预测精度和实时性方面也优于已有的前馈神经网络(feed forward neural network, FFNN)和门控循环单元神经网络(gated recurrent unit, GRU)方法。
中图分类号:
1 |
QU H , MA W T , ZHAO J H , et al. Prediction method for network traffic based on maximum correntropy criterion[J]. China Communications, 2013, 10 (1): 134- 145.
doi: 10.1109/CC.2013.6457536 |
2 | 田中大, 李树江, 王艳红, 等. 高斯过程回归补偿ARIMA的网络流量预测[J]. 北京邮电大学学报, 2017, 40 (6): 65- 73. |
TIAN Zhongda , LI Shujiang , WANG Yanhong , et al. Network traffic prediction based on ARIMA with gaussian process regression compensation[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40 (6): 65- 73. | |
3 | AZZOUNI A, PUJOLLE G. A long short-term memory recurrent neural network framework for network traffic matrix prediction[EB/OL]. (2017-06-08)[2018-04-15]. https://arxiv.org/abs/1705.05690. |
4 |
LANER M , SVOBODA P , RUPP M . Parsimonious fitting of long-range dependent network traffic using A RMA models[J]. IEEE Communications Letters, 2013, 17 (12): 2368- 2371.
doi: 10.1109/LCOMM.2013.102613.131853 |
5 | YADAV R K , BALAKRISHNAN M . Comparative evaluation of ARIMA and ANFIS for modeling of wireless network traffic time series[J]. Eurasip Journal on Wireless Communications & Networking, 2014, 2014 (1): 8- 15. |
6 |
KATRIS C , DASKALAKI S . Comparing forecasting approaches for Internet traffic[J]. Expert Systems with Applications, 2015, 42 (21): 8172- 8183.
doi: 10.1016/j.eswa.2015.06.029 |
7 | NIE L S , JIANG D D , GUO L , et al. Traffic matrix prediction and estimation based on deep learning in large-scale IP backbone networks[J]. Journal of Network & Computer Applications, 2016, 76 (C): 16- 22. |
8 | LIANG Y , QIU L . Network traffic prediction based on SVR improved by chaos theory and ant colony optimization[J]. International Journal of Future Generation Communication & Networking, 2015, 8 (1): 484- 488. |
9 | Xiang C , Qu P , Qu X . Network traffic prediction based on MK-SVR[J]. Journal of Information & Computational Science, 2015, 12 (8): 3185- 3197. |
10 |
HONG W C . Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting[J]. Neural Computing and Applications, 2012, 21 (3): 583- 593.
doi: 10.1007/s00521-010-0456-7 |
11 | LV Y , DUAN Y , KANG W , et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (2): 865- 873. |
12 | 江露琪, 孙文胜. 基于改进的BP神经网络的网络流量预测模型[J]. 通信技术, 2017, 50 (1): 68- 73. |
JIANG Luqi , SUN Wensheng . Research and implementation of network traffic prediction based on modified BP neural network[J]. Communication Technology, 2017, 50 (1): 68- 73. | |
13 | SHAO H X, SOONG B H. Traffic flow prediction with Long Short-Term Memory Networks (LSTMs)[C]// Region 10 conference (TENCON 2016). Singapore: IEEE, 2017: 2986-2989. |
14 | LUO X , ZHOU W , WANG W , et al. Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data[J]. IEEE Access, 2018, 27 (6): 5705- 5715. |
15 | FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//In Proceedings of the Youth Academic Annual Conference of Chinese Association of Automation (YAC). Wuhan: IEEE, 2016: 324-328. |
16 |
ZHOU G B , WU J , ZHANG C L , et al. Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13 (3): 226- 234.
doi: 10.1007/s11633-016-1006-2 |
17 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
18 |
BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5 (2): 157- 166.
doi: 10.1109/72.279181 |
19 | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2018-04-15]. https://arxiv.org/abs/1412.3555. |
20 |
LAKHINA A , PAPAGIANNAKI K , CROVELLA M , et al. Structural analysis of network traffic flows[J]. Acm Sigmetrics Performance Evaluation Review, 2004, 32 (1): 61- 72.
doi: 10.1145/1012888 |
21 |
JIANG D D , WANG X , GUO L , et al. Accurate estimation of large-scale IP traffic matrix[J]. AEU - International Journal of Electronics and Communications, 2011, 65 (1): 75- 86.
doi: 10.1016/j.aeue.2010.02.008 |
22 |
UHLIG S , QUOITIN B , LEPROPRE J , et al. Providing public intradomain traffic matrices to the research community[J]. Acm Sigcomm Computer Communication Review, 2006, 36 (1): 83- 86.
doi: 10.1145/1111322 |
23 | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30)[2018-04-15]. https://arxiv.org/abs/1412.6980. |
[1] | 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40. |
[2] | 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150. |
[3] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[4] | 马文静, 吴东亚, 汤凯, 王东柱. 一种应用于交通领域的对象解析系统设计方法[J]. 山东大学学报(工学版), 2015, 45(4): 10-18. |
[5] | 王启明, 李战国, 樊爱宛. 基于博弈论的量子蚁群算法[J]. 山东大学学报(工学版), 2015, 45(2): 33-36. |
[6] | 韩忠明, 吴杨, 谭旭升, 刘雯, 杨伟杰. 社会网络结构洞节点度量指标比较与分析[J]. 山东大学学报(工学版), 2015, 45(1): 1-8. |
[7] | 孙香花. 基于距离向量的改进WSN路由算法[J]. 山东大学学报(工学版), 2012, 42(6): 25-30. |
[8] | 刘琪,刘沂训,秦丰林. P2P流媒体系统搭便车行为建模研究[J]. 山东大学学报(工学版), 2012, 42(6): 31-36. |
[9] | 季涛,李永忠. 基于可信计算机制的云计算盲数据处理[J]. 山东大学学报(工学版), 2012, 42(5): 30-34. |
[10] | 刘东慧1,2,姜薇1*. 基于事件本体的Web不良信息挖掘[J]. 山东大学学报(工学版), 2012, 42(5): 35-40. |
[11] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
[12] | 蔡晓军1 ,张擎1 ,柴乔林1 ,孔苏丽2 . 基于能量均衡的n分多路径路由算法[J]. 山东大学学报(工学版), 2009, 39(2): 141-145. |
[13] | 陈冬岩. 基于多信道的MAC层协议在无线传感器网络中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 41-49. |
[14] | 蔡忠欣,张华忠 . 一种基于睡眠和网关选择机制的分簇协议[J]. 山东大学学报(工学版), 2008, 38(1): 56-60 . |
[15] | 黄忠, 葛连升. 基于CoAP的物联网Web服务统一访问方法[J]. 山东大学学报(工学版), 2014, 44(4): 16-21. |
|