您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 91-94.doi: 10.6040/j.issn.1672-3961.0.2015.032

• 信息科学与工程 • 上一篇    

带有噪音的稀疏解的稳定性分析的注

崔安刚, 李海洋, 任璐   

  1. 西安工程大学理学院, 陕西 西安 710048
  • 收稿日期:2015-02-08 修回日期:2015-05-26 出版日期:2015-08-20 发布日期:2015-02-08
  • 通讯作者: 李海洋(1975-),男,陕西富平人,教授,博士,主要研究方向为稀疏信息处理,量子逻辑,格上拓扑学等.E-mail:fplihaiyang@126.com E-mail:fplihaiyang@126.com
  • 作者简介:崔安刚(1989-),男,山东临沂人,主要硕士研究生,研究方向为稀疏信息处理.E-mail:cuiangang@163.com
  • 基金资助:
    国家自然科学基金资助项目(11271297);陕西省教育厅专项科研计划项目资助项目(14JK1299);西安工程大学研究生创新基金资助项目(CX2015012)

A note on the analysis of stability of noised sparse solutions

CUI Angang, LI Haiyang, REN Lu   

  1. School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
  • Received:2015-02-08 Revised:2015-05-26 Online:2015-08-20 Published:2015-02-08

摘要: DONOHO D L, ELAD M等人分别利用矩阵的相干性和sparkη(A)的性质证明了(P0ε)问题的稳定性定理。本研究首先通过反例指出ELAD M的证明过程存在错误,其次利用sparkη(A)和矩阵奇异值的性质重新证明(P0ε)问题的稳定性定理。

关键词: 噪音, 矩阵奇异值, 稳定性, 欠定线性方程组, 稀疏解

Abstract: Donoho D L and Elad M proved stability theorem of problem (P0ε) by using the properties of matrix's mutual-coherence and sparkη(A) respectively. Counter-example was used to show that there were some mistakes in Elad M's proof, and then stability theorem of problem (P0ε) was reproved by using the properties of sparkη(A) and the singular value of matrix.

Key words: the underdetermined linear systems, singular value of matrix, stability, sparse solution, noise

中图分类号: 

  • O242.2
[1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[2] LAI M J. On sparse solutions of under-determinedlinear systems[J].Journal of Concrete and Applicable Mathematics, 2010, 8:296-327.
[3] FIGUEIREDO M A T, NOWAK R D. An EM algorithm for wavelet-based image restoration[J]. IEEE Transactions On Image Processing, 2003, 12(8):906-916.
[4] DONOHO D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete and Computional Geometry, 2006, 35(4):617-652.
[5] COHEN A, DAHMEN W, DWVORE R. Compressed sensing and best k-term approximation[J]. Journal of the American Society, 2009, 22(1):211-231.
[6] CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strateies[J].IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[7] CANDES E J, TAO T. Decoding by linear programing[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[8] CANDES E J, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
[9] BARANIUK R G. Compressed sensing[J].IEEE Signal Processing Magazine, 2007, 24(6):118-121.
[10] 石光明, 刘丹华. 压缩感知理论及其研究进展[J].电子学报, 2009, 37(5):1070-1081. SHI Guangming, LIU Danhua. Advance in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5):1070-1081.
[11] 许志强. 压缩感知[J]. 中国科学:数学, 2012, 42(9):865-877. XU Zhiqiang. Compressed sensing[J].Science China:Math, 2012, 42(9):865-877.
[12] LI Y, CICHOCKI A, AMARI S. Sparse component analysis for blind source separation with less sensors than source[C]//Processdings of 4th International Symposium on Independent Component Analysis and Blind Signal Separation.Nara, Japan:[s.n.], 2003:89-94.
[13] DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1):6-18.
[14] ELAD M. Sparse and redundant representations[M]. London:Springer, 2010:85-86.
[15] DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries vial1 minimization[J].Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202.
[16] DONOHO D L, HUO X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 1999, 47(7):2845-2862.
[17] HUO S, ZHANG Z. Matching pursuit with timefrequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[18] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[J].IEEE Transactions on Information Theory, 1993, 10(7):40-44.
[19] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159.
[20] GOLOMB S W, BAUMERT L D. The Search for Hadamard Matrices[J]. American Mathematical Society, 1963, 70(1):12-17.
[1] 李崴,王者超,李术才,丁万涛,王琦,宗智,刘克奇. 哈尔滨地铁粉质黏土力学性质与超前支护方式[J]. 山东大学学报(工学版), 2018, 48(2): 61-71.
[2] 秦利国,何潇,周东华. 一种时延多智能体系统的分布式编队[J]. 山东大学学报(工学版), 2017, 47(5): 79-88.
[3] 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49.
[4] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[5] 孔振兴,皮大伟,王显会,王洪亮,陈山. 汽车液压式主动稳定杆设计及控制算法[J]. 山东大学学报(工学版), 2017, 47(1): 104-111.
[6] 郭永建,曹周阳,生丽娟. 岩质边坡锚杆应力监测离心模型试验研究[J]. 山东大学学报(工学版), 2016, 46(2): 101-107.
[7] 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71.
[8] 姚占勇,张昊,商庆森,宫本辉,刘志杭,王旭刚. 可溶盐作用下水泥稳定花岗岩风化料特性[J]. 山东大学学报(工学版), 2016, 46(2): 85-93.
[9] 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28.
[10] 魏伟, 戴明, 李嘉全, 毛大鹏, 李贤涛. 基于频域的光电稳定平台扰动观测器设计[J]. 山东大学学报(工学版), 2015, 45(4): 45-49.
[11] 苗领, 李玉江, 李枫. 聚合物/表面活性剂驱模拟采出水的乳化稳定性[J]. 山东大学学报(工学版), 2015, 45(2): 89-94.
[12] 贾丹丹, 魏爱荣. 具有执行器饱和耗散Hamilton系统的镇定分析[J]. 山东大学学报(工学版), 2014, 44(5): 20-28.
[13] 王海燕,李贻斌*. 双足机器人动态上下楼梯的规划与控制[J]. 山东大学学报(工学版), 2014, 44(1): 57-62.
[14] 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71.
[15] 潘金凤,赵建立*,付世华. 逻辑切换控制网络的可控性和稳定性[J]. 山东大学学报(工学版), 2013, 43(4): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!