您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 82-87.doi: 10.6040/j.issn.1672-3961.0.2014.196

• 化学与环境 • 上一篇    下一篇

反应条件对磷酸铁粒度分布的影响

骆艳华1,2, 佘世杰2, 曹卫国1, 潘峰1,3   

  1. 1. 南京理工大学化工学院, 江苏 南京 210094;
    2. 中钢集团安徽天源科技股份有限公司, 安徽 马鞍山 243000;
    3. 国家民用爆破器材质量监督检验中心, 江苏 南京 210094
  • 收稿日期:2014-07-17 修回日期:2015-01-08 发布日期:2014-07-17
  • 通讯作者: 潘峰(1971-),男,江苏南京人,副教授,博士,主要研究方向为电纺丝,超级电容器和锂电池等方面的研究与开发.E-mail:panfengiem@163.com E-mail:panfengiem@163.com
  • 作者简介:骆艳华(1977-),女,河北衡水人,博士研究生,主要研究方向为无机材料研究与开发.E-mail:masbaowei@163.com
  • 基金资助:
    国家自然科学基金资助项目(51372117);江苏省公安基础研究基金资助项目(201201004TJ)

Effects of reaction conditions on the size distribution of iron phosphate

LUO Yanhua1,2, SHE Shijie2, CAO Weiguo1, PAN Feng1,3   

  1. 1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;
    2. Anhui Tianyuan Technology Co. Ltd, Sinosteel Corporation, Maanshan 243000, Anhui, China;
    3. National Quality Supervision and Inspection Center for Industrial Explosive Materials, Nanjing 210094, Jiangsu, China
  • Received:2014-07-17 Revised:2015-01-08 Published:2014-07-17

摘要: 采用正交实验方法对乙醇体系中制备磷酸铁的工艺参数进行了优化分析,研究结果表明影响磷酸铁粒度分布的工艺参数主次顺序依次为乙醇的加入速度、反应温度和搅拌速度,且乙醇的加入速度是影响磷酸铁粒度分布的关键因素。当乙醇的加入速度为40 L/min,反应温度为90 ℃,搅拌速度为60 r/min时,制备磷酸铁的d50为0.73 μm;当乙醇的加入速度为10 L/min,反应温度为50 ℃,搅拌速度为120 r/min时,制备的磷酸铁的d50为2.10 μm。通过对磷酸铁进行SEM、BET和XRF分析,当d50为0.73 μm时,比表面积大于60 m2/g;当d50为2.10 μm时,比表面积约为45 m2/g,两种磷酸铁的磷铁物质的量比近似为1:1,当磷酸铁的粒度较细时,其杂质硫含量相对较高。

关键词: 乙醇, 硫含量, 磷酸铁, 正交实验, 粒径

Abstract: The process parameters of preparing iron phosphate in ethanol system were optimized by the method of orthogonal experiment. The results showed that the influencing order of the parameters affecting the particle size distribution of iron phosphate was ethanol addition rate, reaction temperature and stirring speed. The ethanol adding speed was the key factor to influence the size distribution of iron phosphate. When the addition of ethanol was 40 L/min, the reaction temperature was 90 ℃ and the stirring speed was 60 r/min, the d50 of iron phosphate was 0.73 μm. When the addition of ethanol was 10 L/min, the reaction temperature was 50 ℃ and the stirring speed was 120 r/min, the d50 of iron phosphate was 2.10 μm. The physical-chemical indicators of iron phosphate were charaterized by SEM, BET and XRF. When d50 was 0.73 μm, the BET of iron phosphate was larger than 60 m2/g. When d50 was 2.10 μm, the BET of iron phosphate was approximately 45 m2/g. The molar ratio of P and Fe of two kinds of iron phosphate was about 1:1. The content of sulfur was relatively high, when the particle size of iron phosphate was smaller.

Key words: ethanol, iron phosphate, orthogonal experiment, particle size, sulfur content

中图分类号: 

  • O614.81
[1] LI Meijun, WU Zili, MA Zhen, et al. CO oxidation on Au/FePO4 catalyst: reaction pathways and nature of Au sites[J]. Journal of Catalysis, 2009, 266:98-105.
[2] MC CORMICK R L, ALPTEKIN G O. Comparison of alumina-, silica-, titania-, and zirconia—supported FePO4 catalysts for selective methane oxidation[J]. Catalysis Today, 2000, 55:269-280.
[3] ALDON L, PEREA A, WOMES M, et al. Determination of the Lamb-Mssbauer factors of LiFePO4 and FePO4 for electrochemical in situ and operando measurements in Li-ion batteries[J]. Journal of Solid State Chemistry, 2010, 183:218-222.
[4] LI Gang, YANG Zhanxu, YANG Wensheng. Effect of FePO4 coating on electro-chemical and safety performance of LiCoO2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2008, 183:741-748.
[5] 迪丽拜尔·阿合买提,艾尔肯·吐尔逊,肖开提·阿布力孜,等. 磷酸铁纳米薄膜符合光波导氨气传感原件的制备[J]. 应用化学,2010, 27(8):965-969. Dilbar Ahmat, Erkin Tursun, Xawkat Abliz, et al. Fabrication of composite optical wave-guides based onthin films consisted of iron phosphate nanoparticles and their applications as ammonia gas sensor[J]. Chinese Journal of Applied Chemistry, 2010, 27(8):965-969.
[6] 郭学锋. 纳米及介孔材料的制备、表征和催化性能研究[D]. 南京: 南京大学, 2000. GUO Xuefeng. Researched on preparation, characterization and catalytic properties of nano-crystalline and mesoporous materials[D]. Nanjing: Nanjing University, 2000.
[7] WANG Ye, Kiyoshi Otsuka. Partial oxidation of ethane by reductively activated oxygen over iron phosphate catalyst[J]. Journal of Catalysis, 1997, 171(1):106-114.
[8] 叶焕英,郑曲模,陈骏驰,等. 超细二水磷酸铁的制备研究[J]. 无机盐工业,2012, 44(4):59-61. YE huanying, ZHENG Qumo, CHEN Junchi, et al. Preparation of ultrafine iron phosphate dihydrate[J]. Inorganic Chemicals Industry, 2012, 44(4):59-61.
[9] ZHANG S M, ZHANG J X, XU S J, et al. Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries[J]. Electrochimica Acta, 2013, 88:287-293.
[10] SHI Z C, ATTIA A, YE W L, et al. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries[J]. Electrochemical Solid-Stated Letter, 2008, 53:2665-2673.
[11] MASQUELIER P, REALE C, WURM M, et al. Hydrated iron phosphates FePO4·nH2O and Fe4(P2O7)3·nH2O as 3V positive electrodes in rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2002, 149(8):A1037-A1044.
[12] DONGYEON SON, KIM EUNJIN, KIM TAEGON, et al. Nanoparticle iron phosphate anode material for Li-ion battery[J]. Application Physicis Letter, 2004, 85(24):5875-5879.
[13] ZAGHIB K, JULIEN C M. Structure and electrochemistry of FePO4·2H2O hydrate[J]. Journal of Power Sources, 2005, 142(1):279-284.
[14] 罗西佳,肖仁贵,曹建新,等. 介质对磷酸铁结晶影响的研究[J]. 贵州大学学报:自然科学版, 2011, 28(6):48-51. LUO Xijia, XIAO Rengui, CAO Jianxin, et al. Study of iron(Ⅲ) phosphate obtained from different media[J]. Journal of Guizhou University:Natural Sciences, 2011, 28(6):48-51.
[15] 周玉琳. 由钛白废副硫酸亚铁制备锂离子电池正极材料磷酸铁锂用前驱体磷酸铁的工艺研究[D]. 长沙: 中南大学, 2008. ZHOU Yulin. Study of iron(Ⅲ) phosphate prepared LiFePO4 from ferrous sulfate of TiO2 waste vice[D]. Changsha: Zhongnan University, 2008.
[16] 张震,蒲薇华,任建国,等. 控制结晶法制备球形磷酸铁的团聚尺寸模型[J]. 化学工程,2011, 39(8):20-24. ZHANG Zhen, PU Weihua, REN Jianguo, et al. Agglomeration-size model of ferric phosphate spherical particle prepared by controlled crystallization [J]. Chemical Engineering, 2011, 39(8):20-24.
[17] 吴云胜. 低热固相反应法制备水合磷酸铁正极材料即其充放电性能研究[D]. 南京: 南京师范大学, 2011. WU Yunsheng. Prepared hydrated iron phosphate under low temperature solid state reaction and researched on the charge and discharge properties of cathode materials [D]. Nanjing: Nanjing Normal University, 2011.
[18] GUO Xuefeng, DING Weiping, CHEN Hong, et al. Preparation and characterization of nanosized Fe-P-O catalyst[J]. Journal of Fuel Chemical and Technology, 2000, 28(5):385-390.
[19] ROHNER F, EMST F O, ARNOLD M, et al. Synthesis characterization and bioavailability in rats of fettic phosphate nanoparticles[J]. Nutrition Research Reviews, 2007, 137:614-618.
[20] GABERSCEK M, DOMIKO R, JAMNIK, J. Is small particle size more important than carbon coating an example study on LiFePO4 cathodes?[J]. Electrochemical Communication, 2007, 9:2778-2783.
[21] HUANG Y H, REN H B, YIN S Y, et al. Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method[J]. Journal of Power Sources, 2010, 195(2):610-613.
[22] ZHANG Tongbao, LU Yangcheng, LUO Guangsheng. Size adjustment of iron phosphate nanoparticles by using mixed acids[J]. Industrial & Engineering Chemistry Research, 2013(52):6962-6968.
[23] 刘学蔚,侯绪浩,陈怡憓,等. 正交优化白及多糖复合支架材料的实验研究[J]. 山东大学学报:医学版,2014, 52(3):1-5. LIU Xuewei, HOU Xuhao, CHEN Yihui, et al. Experimental study of the bletilla glucomanna composited scaffolds by orthogonal experiment[J]. Journal of Shandong University: Health Sciences, 2014, 52(3):1-5.
[24] JEFF WU C F, MICHAEL Hamada.实验设计与分析及参数优化[M]. 张润楚,郑海涛,兰燕,等,译. 北京:中国统计出版社, 2002:176-225. JEFF WU C F, MICHAEL Hamada. Design and analysis of experiments and parameter optimization[M]. ZHANG Runchu, ZHENG Haitao, LAN Yan, et al, trans. Beijing: China Statistical Publishing House, 2002:176-225.
[25] NIELSEN A E. Kinetics of precipitation [M]. Oxford: Pergamon Press, 1964:350-355.
[26] DIRKSEN J A, RING T A. Fundamentals of crystallization: kinetic effects on particle size distributions and morphology[J]. Chemical Engineering Sciences, 1991, 46(10):2389-2427.
[1] 石静. 有机碱乙醇胺对胜利原油界面张力的影响[J]. 山东大学学报(工学版), 2013, 43(3): 70-74.
[2] 杨金杯1,3,余美琼1,郑志功2,邱挺3*. 热集成变压精馏分离乙酸乙酯与乙醇工艺及模拟[J]. 山东大学学报(工学版), 2013, 43(1): 109-114.
[3] 崔乃鑫,赵芳芳,梁冰,盖迪. 矸石山内部粒径分布规律的实验研究[J]. 山东大学学报(工学版), 2012, 42(2): 52-57.
[4] 张克松 胡京南 刘云岗 鲍晓峰. 乙醇汽油和普通汽油对发动机催化器性能的影响[J]. 山东大学学报(工学版), 2010, 40(1): 149-153.
[5] 杨晶,岳钦艳,李颖,李仁波,高宝玉 . 改性活性炭纤维在含磷废水中的应用[J]. 山东大学学报(工学版), 2008, 38(1): 92-95 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!