山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 123-128.
尤鸣宇,陈燕,李国正
YOU Ming-yu, CHEN Yan, LI Guo-zheng
摘要:
机器学习中各类别样本数目不等是普遍存在且备受关注的不均衡问题。广泛用于特征选择的信息增益IG(information gain)算法,在这类不均衡问题中的表现却极少被研究。本文在讨论IG算法在不同均衡度数据集上性能的基础上,提出了一种新的解决不均衡问题的特征选择算法Im-IG(imbalancedinformation gain)。Im-IG通过提高小类分布在信息熵计算中的权重,优先选入有利于小类正确分离的特征。在提升整体分类性能的同时,着眼于提高小类的正确率。在多个不均衡数据集上的实验结果表明,Im-IG算法能较好地解决IG算法在不均衡问题中的不适应性,是一种有效的不均衡问题特征选择算法。
| [1] | 唐杰烽,张佳,龙锦益. 基于全局冗余最小的快速多标签特征选择方法[J]. 山东大学学报 (工学版), 2025, 55(6): 21-34. |
| [2] | 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57. |
| [3] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
| [4] | 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75. |
| [5] | 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44. |
| [6] | 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7. |
| [7] | 汪嘉晨, 唐向红, 陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87. |
| [8] | 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36. |
| [9] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
| [10] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
| [11] | 方昊,李云. 基于多次随机欠采样和POSS方法的软件缺陷检测[J]. 山东大学学报(工学版), 2017, 47(1): 15-21. |
| [12] | 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27. |
| [13] | 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15-18. |
| [14] | 魏小敏,徐彬,关佶红. 基于递归特征消除法的蛋白质能量热点预测[J]. 山东大学学报(工学版), 2014, 44(2): 12-20. |
| [15] | 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29. |
|