JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2009, Vol. 39 ›› Issue (3): 7-10.
• Articles • Previous Articles Next Articles
Received:
Online:
Published:
Abstract:
The learning performance and the generalization property of support vector machines (SVMs) are greatly influenced by the suitable setting of some parameters. The parameters selection can be transformed into an optimization problem by defining the root mean square error of a SVM prediction model as an evaluation function. A kind of improved estimation of the distribution algorithm (EDA) with a chaotic-mutation operation was proposed and used to optimize parameters of a ε-SVM including a penalty factor, an insensitive loss coefficient and a width of a Gaussian kernel function. The improved EDA could take advantage of the randomness and ergodicity of chaos, which could solve the local minima problem of traditional EDAs. Simulation result of the prediction of a Chebyshev chaotic time series showed that the improved EDA was an effective method of solving the problem for parameters selection of a SVM.
Key words: support vector machine; parameters selection; chaotic-mutation; estimation of distribution algorithm
WANG Xue-Song, CHENG Yu-Hu, HAO Ming-Lin. Parameters selection of a support vector machine using an improved estimation of the distribution algorithm[J].JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 7-10.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://gxbwk.njournal.sdu.edu.cn/EN/
http://gxbwk.njournal.sdu.edu.cn/EN/Y2009/V39/I3/7
Cited