Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (2): 80-89.doi: 10.6040/j.issn.1672-3961.0.2023.021
• Machine Learning & Data Mining • Previous Articles
GAO Zewen1,2, WANG Jian3, WEI Benzheng1,2*
CLC Number:
[1] BEN K, HALL L O, GOLDGOF D B, et al. Ensembles of convolutional neural networks for survival time estimation of high-grade glioma patients from multimodal MRI[J]. Diagnostics, 2022, 12(2): 345-359. [2] AHIR B K, ENGELHARD H H, LAKKA S S. Tumor development and angiogenesis in adult brain tumor:glioblastoma[J].Molecular Neurobiology, 2020, 57: 2461-2478. [3] LI S, WANG C, CHEN J, et al. Signaling pathways in brain tumors and therapeutic interventions[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 8-31. [4] BAI J, VARGHESE J, JAIN R. Adult glioma WHO classification update, genomics, and imaging: what the radiologists need to know[J]. Top Magn Reson Imaging, 2020, 29(2): 71-82. [5] ANTONIO Di Ieva. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario[J]. Neuroradiology, 2021, 63(8): 1-10. [6] ANCA L, GROS U, WOLFGANG A, et al. PET for radiation treatment planning of brain tumours[J]. Radiotherapy and Oncology, 2010, 96(3): 325-327. [7] CHU R, KIM G, TAUHID S, et al. Whole brain and deep gray matter atrophy detection over 5 years with 3T MRI in multiple sclerosis using a variety of automated segmentation pipelines[J]. PLoS ONE, 2018, 13(11): 1-14. [8] TUSTISON N J, SHRINIDHI K L, WINTERMARK M, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified)with ANTsR[J]. Neuroinformatics, 2015, 13: 209-225. [9] KAUS M, WARFIELD S, NABAVI A, et al. Automated segmentation of MR images of brain tumors [J]. Radiology, 2001, 218(2): 586-591. [10] WU W, CHEN A, ZHAO L, et al. Brain tumor detection and segmentation in a CRF(conditional random fields)framework with pixel-pairwise affinity and superpixel-level features[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 241-253. [11] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. [12] MOHAMMED Y M A, EL S, JELLOULI I. A survey of methods for brain tumor segmentation-based MRI images[J]. Journal of Computational Design and Engineering, 2023, 10(1): 266-293. [13] ZHU Z, HE X, QI G, et al. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI[J]. Information Fusion, 2023, 91: 376-387. [14] HAVAEI M, DAVY A, WARDE-FARLEY D, et al.Brain tumor segmentation with deep neural networks[J].Medical Image Analysis, 2017, 35:18-31. [15] ISLAM M, VIBASHAN V S, JOSE V J M, et al. Brain tumor segmentation and survival prediction using 3D attention UNet[C] //Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Heldin Conjunction with MICCAI 2019. Shenzhen, China. Springer, 2020: 262-272. [16] LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. [17] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C] // Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018. Granada, Spain: Springer, 2019: 311-320. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017: 30-40. [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C] //International Conference on Learning Representations. Vienna, Austria: ICLR, 2021: 21-31. [20] AZIZ M J,ZADEH M,FARNIA P, et al. Accurate automatic glioma segmentation in brain MRI images based on CapsNet[C] //International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). Guadalajara, Mexico: IEEE, 2021: 3882-3885. [21] JIA Q, SHU H. Bitr-unet: a CNN-transformer combined network for MRI brain tumor segmentation[C] //International MICCAI Brainlesion Workshop. Singapore: Springer, 2022: 3-14. [22] CHEN J, LU Y, YU Q, et al. Transunet: transformers make strong encoders for medical image segmentation[C] //International MICCAI Brainlesion Workshop. Strasbourg, France: Springer, 2021: 3-14. [23] ZHANG Y, LIU H, HU Q. Transfuse: fusing transformers and cnns for medical image segmentation[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer, 2021: 14-24. [24] WANG W, CHEN C, DING M, et al. Transbts: multimodal brain tumor segmentation using transformer[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer, 2021: 109-119. [25] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France:Springer, 2021: 36-46. [26] QIN X, ZHANG Z, HUANG C, et al. U2-Net:going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. [27] WANG H, ZHU Y, GREEN B, et al. Axial-deeplab: stand-alone axial-attention for panoptic segmentation[C] //European Conference on Computer Vision. Scotland, UK: Springer, 2020: 108-126. [28] RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[J]. Advances in Neural Information Processing Systems, 2019: 32-45. [29] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[C] //Proceedings of NAACL-HLT. New Orleans, USA: 2018: 464-468. [30] RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C] //International Symposium on Visual Computing. Las Vegas, USA:Springer, 2016: 234-244. [31] ABDOLLAHI A, PRADHAN B, ALAMRI A. VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8: 179424-179436. [32] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C] //The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers. Pacific Grove, USA: IEEE, 2003: 1398-1402. [33] DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67. [34] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 2017, 4(1): 1-13. [35] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark(BRATS)[J]. IEEE Transactions on Medical Imaging, 2014, 34(10): 1993-2024. [36] ZHOU Z, RAHMAN S M M, TAJBAKHSH N, et al. Unet++: a nested U-net architecture for medical image segmentation[C] //International MICCAI Brainlesion Workshop. Granada, Spain:Springer, 2018: 3-11. [37] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C] //International MICCAI Brainlesion Workshop. Munich, Germany: Springer, 2015: 234-241. [38] HU Z, LI L, SUI A, et al. An efficient R-transformer network with dual encoders for brain glioma segmentation in MR images[J]. Biomedical Signal Processing and Control, 2023, 79: 104034. |
[1] | LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108. |
[2] | XU Qianqian, XU Qian, XU Huachang, ZHAO Yulin, XU Kai, ZHU Hong. Intelligent prediction method of IDH1 mutation status of glioma based on CnViT [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 127-134. |
[3] | Chunhong CAO,Hongxuan DUAN,Ling CAO,Lele ZHANG,Kai HU,Fen XIAO. Real-time semantic segmentation of high-resolution remote sensing image based on multi-level feature cascade [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 19-25. |
[4] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[5] | Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14. |
[6] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[7] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[8] | Minghe GAO,Ying ZHANG,Rongrong ZHANG,Zihao HUANG,Linyan HUANG,Fanyu LI,Xin ZHANG,Yanhao WANG. Air quality prediction approach based on integrating forecasting dataset [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 91-99. |
[9] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[10] | Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22. |
[11] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[12] | Hong CHEN,Xiaofei YANG,Qing WAN,Yingcang MA. Multi-label feature selection algorithm based on correntropy andmanifold learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 27-36. |
[13] | Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84. |
[14] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[15] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
|