Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (1): 33-44.doi: 10.6040/j.issn.1672-3961.0.2022.310
• Machine Learning & Data Mining • Previous Articles
CHEN Baoguo1, DENG Ming1 *, CHEN Jinlin2
CLC Number:
[1] 周涛,陆惠玲,任海玲,等.基于粗糙集的属性约简算法综述[J]. 电子学报, 2021, 49(7):1439-1449. ZHOU Tao, LU Huiling, REN Hailing, et al. Survey on attribute reduction algorithm of rough set[J]. Acta Electronica Sinica, 2021, 49(7):1439-1449. [2] GAO Can, ZHOU Jie, MIAO Duoqian, et al. Granular-conditional-entropy-based attribute reduction for partially labeled data with proxy labels[J]. Information Sciences, 2021, 580:111-128. [3] ZHANG Qinli, CHEN Yiying, ZHANG Gangqiang, et al. New uncertainty measurement for categorical data based on fuzzy information structures: an application in attribute reduction[J]. Information Sciences, 2021, 580:541-577. [4] 李明,甘秀娜,王月波. 基于集成学习的决策粗糙集特定类属性约简算法[J]. 计算机应用与软件, 2021, 38(6):262-270. LI Ming, GAN Xiuna, WANG Yuebo. Class-specific attribute reduction algorithm for decision-theoretic rough sets based on ensemble learning[J]. Computer Applications and Software, 2021, 38(6):262-270. [5] 姚晟,李初宴,陈悦. 基于非平衡数据下不完备混合型信息系统的属性约简[J]. 计算机应用研究, 2021, 38(5):1331-1335. YAO Sheng, LI Chuyan, CHEN Yue. Attribute reduction of incomplete hybrid information system based on unbalanced data[J]. Application Research of Computers, 2021, 38(5):1331-1335. [6] HU Qinghua, YU Daren, LIU Jingfu, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18):3577-3594. [7] FAN Xiaodong, ZHAO Weida, WANG Changzhong, et al. Attribute reduction based on max-decision neighborhood rough set model[J]. Knowledge-Based Systems, 2018, 151(1):16-23. [8] SHU Wenhao, QIAN Wenbin, XIE Yonghong. Incremental feature selection for dynamic hybrid data using neighborhood rough set[J]. Knowledge-Based Systems, 2020, 194:105516. [9] WANG Changzhong, SHI Yunpeng, FAN Xiaodong, et al. Attribute reduction based on k-nearest neighborhood rough sets[J]. International Journal of Approximate Reasoning, 2019, 106:18-31. [10] CHEN Hongmei, LI Tianrui, FAN Xin, et al. Feature selection for imbalanced data based on neighborhood rough sets[J]. Information Sciences, 2019, 483:1-20. [11] HU M, TSANG E C C, GUO Y T, et al. A novel approach to attribute reduction based on weighted neighborhood rough sets[J]. Knowledge-Based Systems, 2021, 220:106908. [12] WANG Changzhong, HUANG Yang, SHAO Mingwen, et al. Feature selection based on neighborhood self-information[J]. IEEE Transactions on Cybernetics, 2020, 50(9):4031-4042. [13] 孙林,赵婧,徐久成,等. 基于邻域粗糙集和帝王蝶优化的特征选择算法[J]. 计算机应用, 2022, 42(5):1355-1366. SUN Lin, ZHAO Jing, XU Jiucheng, et al. Feature selection algorithm based on neighborhood rough set and monarch butterfly optimization[J]. Journal of Computer Applications, 2022, 42(5): 1355-1366. [14] 熊菊霞,吴尽昭,王秋红.邻域互信息熵的混合型数据决策代价属性约简[J]. 小型微型计算机系统, 2021, 42(8):1584-1590. XIONG Juxia, WU Jinzhao, WANG Qiuhong. Decision cost attribute reduction of hybrid data based on neighborhood mutual information entropy[J]. Journal of Chinese Computer Systems, 2021, 42(8):1584-1590. [15] 陈曦,刘晶. 基于邻域关系的知识粒度增量式属性约简算法[J]. 微电子学与计算机, 2020, 37(10):1-6. CHEN Xi, LIU Jing. Knowledge granularity incremental attribute reduction algorithm based on neighborhood relation[J]. Microelectronics & Computer, 2020, 37(10):1-6. [16] YANG Xiaoling, CHEN Hongmei, LI Tianrui, et al. Neighborhood rough sets with distance metric learning for feature selection[J]. Knowledge-Based Systems, 2021, 224:107076. [17] WAN Jihong, CHEN Hongmei, YUAN Zhong, et al. A novel hybrid feature selection method considering feature interaction in neighborhood rough set[J]. Knowledge-Based Systems, 2021, 227:107167. [18] SUN Lin, WANG Tianxiang, DING Weiping, et al. Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification[J]. Information Sciences, 2021, 578:887-912. [19] 张雨新,孙达明,李飞. 基于粒化单调的不完备混合型数据增量式属性约简算法[J]. 计算机应用与软件, 2021, 38(3):279-286. ZHANG Yuxin, SUN Daming, LI Fei. Incremental attribute reduction algorithm for incomplete mixed data based on granulation monotony[J]. Computer Applications and Software, 2021, 38(3):279-286. [20] 蔡艳婧,程实,王强. 不完备混合决策粗糙集特定类多目标属性约简[J]. 计算机工程与设计, 2020, 41(11):3063-3071. CAI Yanjing, CHENG Shi, WANG Qiang. Class-specific multi-objective attribute reduction for incomplete mixed decision-theoretic rough set[J]. Computer Engineering and Design, 2020, 41(11):3063-3071. [21] 李小南,赵璐,易黄建. 基于加权信息熵的直觉模糊信息系统的三支决策[J]. 控制与决策, 2022, 37(10):2705-2713. LI Xiaonan, ZHAO Lu, YI Huangjian. Three-way decision of intuitionistic fuzzy information systems based on the weighted information entropy[J]. Control and Decision, 2022, 37(10):2705-2713. [22] 徐怡,李宝峰,李策. 基于权重分布的多粒度粗糙集模型[J]. 模糊系统与数学, 2020, 34(6):55-67. XU Yi, LI Baofeng, LI Ce. Multi-granulation rough set model based on weight distribution[J]. Fuzzy Systems and Mathematics, 2020, 34(6):55-67. [23] VLUYMANS S, PARTHALAIN N M, CORNELIS C, et al. Weight selection strategies for ordered weighted average based fuzzy rough sets[J]. Information Sciences, 2019, 501:155-171. [24] HU Qinghua, ZHANG Lei, ZHANG David, et al. Measuring relevance between discrete and continuous features based on neighborhood mutual information[J]. Expert Systems with Applications, 2011, 38:10737-10750. [25] DEMIAR J, SCHUURMANS D. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1):1-30. |
[1] | LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108. |
[2] | XU Qianqian, XU Qian, XU Huachang, ZHAO Yulin, XU Kai, ZHU Hong. Intelligent prediction method of IDH1 mutation status of glioma based on CnViT [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 127-134. |
[3] | Chunhong CAO,Hongxuan DUAN,Ling CAO,Lele ZHANG,Kai HU,Fen XIAO. Real-time semantic segmentation of high-resolution remote sensing image based on multi-level feature cascade [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 19-25. |
[4] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[5] | Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14. |
[6] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[7] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[8] | Minghe GAO,Ying ZHANG,Rongrong ZHANG,Zihao HUANG,Linyan HUANG,Fanyu LI,Xin ZHANG,Yanhao WANG. Air quality prediction approach based on integrating forecasting dataset [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 91-99. |
[9] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[10] | Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22. |
[11] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[12] | Hong CHEN,Xiaofei YANG,Qing WAN,Yingcang MA. Multi-label feature selection algorithm based on correntropy andmanifold learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 27-36. |
[13] | Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84. |
[14] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[15] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
|